
 EXPERIMENTAL FUTURES

Technological Lives, Scientific Arts, Anthropological Voices

A series edited by Michael M. J. Fischer and Joseph Dumit

Two Bits

 2008 duke university press durham and london

 2008 duke university press durham and london

 The CulTural

 SignifiCanCe of

 free SofTware

Two Bits

 ChriSTopher M. KelTy

© 2008 Duke University Press

Printed in the United States of America on acid-free paper ∞

Designed by C. H. Westmoreland

Typeset in Charis (an Open Source font) by Achorn International

Library of Congress Cataloging-in-Publication data and republication acknowledg-

ments appear on the last printed pages of this book.

Licensed under the Creative Commons Attribution-NonCommercial-Share Alike Li-

cense, available at http://creativecommons.org/licenses/by-nc-sa/3.0/ or by mail

from Creative Commons, 559 Nathan Abbott Way, Stanford, Calif. 94305, U.S.A.

“NonCommercial” as defined in this license specifically excludes any sale of this

work or any portion thereof for money, even if sale does not result in a profit by the

seller or if the sale is by a 501(c)(3) nonprofit or NGO.

Duke University Press gratefully acknowledges the support of HASTAC (Humani-

ties, Arts, Science, and Technology Advanced Collaboratory), which provided funds

to help support the electronic interface of this book.

Two Bits is accessible on the Web at twobits.net.

To my parents, Anne and Ted

Contents

Preface ix

Acknowledgments xiii

Introduction 1

part i the internet

1. Geeks and Recursive Publics 27

2. Protestant Reformers, Polymaths, Transhumanists 64

part ii free software

3. The Movement 97

4. Sharing Source Code 118

5. Conceiving Open Systems 143

6. Writing Copyright Licenses 179

7. Coordinating Collaborations 210

part iii modulations

8. “If We Succeed, We Will Disappear” 243

9. Reuse, Modification, and the Nonexistence of Norms 269

Conclusion: The Cultural Consequences of Free Software 301

Notes 311

Bibliography 349

Index 367

Preface

This is a book about Free Software, also known as Open Source
Software, and is meant for anyone who wants to understand the
cultural significance of Free Software. Two Bits explains how Free
Software works and how it emerged in tandem with the Internet as
both a technical and a social form. Understanding Free Software in
detail is the best way to understand many contentious and confus-
ing changes related to the Internet, to “commons,” to software, and
to networks. Whether you think first of e-mail, Napster, Wikipedia,
MySpace, or Flickr; whether you think of the proliferation of da-
tabases, identity thieves, and privacy concerns; whether you think
of traditional knowledge, patents on genes, the death of scholarly
publishing, or compulsory licensing of AIDS medicine; whether
you think of MoveOn.org or net neutrality or YouTube—the issues
raised by these phenomena can be better understood by looking
carefully at the emergence of Free Software.

Why? Because it is in Free Software and its history that the is-
sues raised—from intellectual property and piracy to online po-
litical advocacy and “social” software—were first figured out and
confronted. Free Software’s roots stretch back to the 1970s and
crisscross the histories of the personal computer and the Internet,
the peaks and troughs of the information-technology and software
industries, the transformation of intellectual property law, the in-
novation of organizations and “virtual” collaboration, and the rise
of networked social movements. Free Software does not explain
why these various changes have occurred, but rather how indi-
viduals and groups are responding: by creating new things, new
practices, and new forms of life. It is these practices and forms of
life—not the software itself—that are most significant, and they
have in turn served as templates that others can use and transform:
practices of sharing source code, conceptualizing openness, writing
copyright (and copyleft) licenses, coordinating collaboration, and
proselytizing for all of the above. There are explanations aplenty
for why things are the way they are: it’s globalization, it’s the net-
work society, it’s an ideology of transparency, it’s the virtualization
of work, it’s the new flat earth, it’s Empire. We are drowning in the
why, both popular and scholarly, but starving for the how.

Understanding how Free Software works is not just an academic
pursuit but an experience that transforms the lives and work of
participants involved. Over the last decade, in fieldwork with soft-
ware programmers, lawyers, entrepreneurs, artists, activists, and
other geeks I have repeatedly observed that understanding how
Free Software works results in a revelation. People—even (or, per-
haps, especially) those who do not consider themselves program-
mers, hackers, geeks, or technophiles—come out of the experience
with something like religion, because Free Software is all about the
practices, not about the ideologies and goals that swirl on its sur-
face. Free Software and its creators and users are not, as a group,
antimarket or anticommercial; they are not, as a group, anti–
intellectual property or antigovernment; they are not, as a group,
pro- or anti- anything. In fact, they are not really a group at all:
not a corporation or an organization; not an NGO or a government
agency; not a professional society or an informal horde of hackers;
not a movement or a research project.

Free Software is, however, public; it is about making things pub-
lic. This fact is key to comprehending its cultural significance, its

x preface

appeal, and its proliferation. Free Software is public in a particu-
lar way: it is a self-determining, collective, politically independent
mode of creating very complex technical objects that are made pub-
licly and freely available to everyone—a “commons,” in common
parlance. It is a practice of working through the promises of equal-
ity, fairness, justice, reason, and argument in a domain of techni-
cally complex software and networks, and in a context of powerful,
lopsided laws about intellectual property. The fact that something
public in this grand sense emerges out of practices so seemingly ar-
cane is why the first urge of many converts is to ask: how can Free
Software be “ported” to other aspects of life, such as movies, music,
science or medicine, civil society, and education? It is this prosely-
tizing urge and the ease with which the practices are spread that
make up the cultural significance of Free Software. For better or for
worse, we may all be using Free Software before we know it.

xipreface

Acknowledgments

Anthropology is dependent on strangers who become friends and
colleagues—strangers who contribute the very essence of the work.
In my case, these strangers are also hyperaware of issues of credit,
reputation, acknowledgment, reuse, and modification of ideas and
things. Therefore, the list is extensive and detailed.

Sean Doyle and Adrian Gropper opened the doors to this project,
providing unparalleled insight, hospitality, challenge, and curios-
ity. Axel Roch introduced me to Volker Grassmuck, and to much
else. Volker Grassmuck introduced me to Berlin’s Free Software
world and invited me to participate in the Wizards of OS confer-
ences. Udhay Shankar introduced me to almost everyone I know,
sometimes after the fact. Shiv Sastry helped me find lodging in
Bangalore at his Aunt Anasuya Sastry’s house, which is called “Sili-
con Valley” and which was truly a lovely place to stay. Bharath
Chari and Ram Sundaram let me haunt their office and cat-5 cables

during one of the more turbulent periods of their careers. Glenn
Otis Brown visited, drank, talked, invited, challenged, entertained,
chided, encouraged, drove, was driven, and gave and received ad-
vice. Ross Reedstrom welcomed me to the Rice Linux Users’ Group
and to Connexions. Brent Hendricks did yeoman’s work, suffer-
ing my questions and intrusions. Geneva Henry, Jenn Drummond,
Chuck Bearden, Kathy Fletcher, Manpreet Kaur, Mark Husband,
Max Starkenberg, Elvena Mayo, Joey King, and Joel Thierstein
have been welcoming and enthusiastic at every meeting. Sid Burris
has challenged and respected my work, which has been an honor.
Rich Baraniuk listens to everything I say, for better or for worse; he
is a magnificent collaborator and friend.

James Boyle has been constantly supportive, for what feels like
very little return on investment. Very few people get to read and
critique and help reshape the argument and structure of a book,
and to appear in it as well. Mario Biagioli helped me see the intri-
cate strategy described in chapter 6. Stefan Helmreich read early
drafts and transformed my thinking about networks. Manuel De-
Landa explained the term assemblage to me. James Faubion cor-
rected my thinking in chapter 2, helped me immeasurably with the
Protestants, and has been an exquisitely supportive colleague and
department chair. Mazyar Lotfalian and Melissa Cefkin provided
their apartment and library, in which I wrote large parts of chapter
1. Matt Price and Michelle Murphy have listened patiently to me
construct and reconstruct versions of this book for at least six years.
Tom and Elizabeth Landecker provided hospitality and stunningly
beautiful surroundings in which to rewrite parts of the book. Lisa
Gitelman read carefully and helped explain issues about documen-
tation and versioning that I discuss in chapter 4. Matt Ratto read
and commented on chapters 4–7, convinced me to drop a useless
distinction, and to clarify the conclusion to chapter 7. Shay David
provided strategic insights about openness from his own work and
pushed me to explain the point of recursive publics more clearly.
Biella Coleman has been a constant interlocutor on the issues in
this book—her contributions are too deep, too various, and too
thorough to detail. Her own work on Free Software and hackers
has been a constant sounding board and guide, and it has been
a pleasure to work together on our respective texts. Kim Fortun
helped me figure it all out.

xiv acknowledgments

George Marcus hired me into a fantastic anthropology depart-
ment and has had immense faith in this project throughout its
lifetime. Paul Rabinow, Stephen Collier, and Andrew Lakoff have
provided an extremely valuable setting—the Anthropology of the
Contemporary Research Collaboratory—within which the argu-
ments of this book developed in ways they could not have as a
solitary project. Joe Dumit has encouraged and prodded and ques-
tioned and brainstormed and guided and inspired. Michael Fischer
is the best mentor and advisor ever. He has read everything, has
written much that precedes and shapes this work, and has been an
unwavering supporter and friend throughout.

Tish Stringer, Michael Powell, Valerie Olson, Ala Alazzeh, Lina
Dib, Angela Rivas, Anthony Potoczniak, Ayla Samli, Ebru Kayaalp,
Michael Kriz, Erkan Saka, Elise McCarthy, Elitza Ranova, Amanda
Randall, Kris Peterson, Laura Jones, Nahal Naficy, Andrea Frolic,
and Casey O’Donnell make my job rock. Scott McGill, Sarah El-
lenzweig, Stephen Collier, Carl Pearson, Dan Wallach, Tracy Volz,
Rich Doyle, Ussama Makdisi, Elora Shehabbudin, Michael Morrow,
Taryn Kinney, Gregory Kaplan, Jane Greenberg, Hajime Nakatani,
Kirsten Ostherr, Henning Schmidgen, Jason Danziger, Kayte Young,
Nicholas King, Jennifer Fishman, Paul Drueke, Roberta Bivins,
Sherri Roush, Stefan Timmermans, Laura Lark, and Susann Wilkin-
son either made Houston a wonderful place to be or provided an
opportunity to escape it. I am especially happy that Thom Chivens
has done both and more.

The Center for the Study of Cultures provided me with a Faculty
Fellowship in the fall of 2003, which allowed me to accomplish
much of the work in conceptualizing the book. The Harvard His-
tory of Science Department and the MIT Program in History, An-
thropology, and Social Studies of Science and Technology hosted
me in the spring of 2005, allowing me to write most of chapters
7, 8, and 9. Rice University has been extremely generous in all
respects, and a wonderful place to work. I’m most grateful for a
junior sabbatical that gave me the chance to complete much of
this book. John Hoffman graciously and generously allowed the
use of the domain name twobits.net, in support of Free Software.
Ken Wissoker, Courtney Berger, and the anonymous reviewers for
Duke University Press have made this a much, much better book
than when I started.

xvacknowledgments

My parents, Ted and Anne, and my brother, Kevin, have always
been supportive and loving; though they claim to have no idea what
I do, I nonetheless owe my small success to their constant support.
Hannah Landecker has read and reread and rewritten every part of
this work; she has made it and me better, and I love her dearly for
it. Last, but not least, my new project, Ida Jane Kelty Landecker, is
much cuter and smarter and funnier than Two Bits, and I love her
for distracting me from it.

xvi acknowledgments

Introduction

Around 1998 Free Software emerged from a happily subterranean
and obscure existence stretching back roughly twenty years. At the
very pinnacle of the dotcom boom, Free Software suddenly popu-
lated the pages of mainstream business journals, entered the strat-
egy and planning discussions of executives, confounded the radar
of political leaders and regulators around the globe, and permeated
the consciousness of a generation of technophile teenagers growing
up in the 1990s wondering how people ever lived without e-mail.
Free Software appeared to be something shocking, something that
economic history suggested could never exist: a practice of creat-
ing software—good software—that was privately owned, but freely
and publicly accessible. Free Software, as its ambiguous moniker
suggests, is both free from constraints and free of charge. Such
characteristics seem to violate economic logic and the principles of
private ownership and individual autonomy, yet there are tens of

� introduction

millions of people creating this software and hundreds of millions
more using it. Why? Why now? And most important: how?

Free Software is a set of practices for the distributed collabora-
tive creation of software source code that is then made openly and
freely available through a clever, unconventional use of copyright
law.1 But it is much more: Free Software exemplifies a considerable
reorientation of knowledge and power in contemporary society—a
reorientation of power with respect to the creation, dissemination,
and authorization of knowledge in the era of the Internet. This book
is about the cultural significance of Free Software, and by cultural
I mean much more than the exotic behavioral or sartorial traits of
software programmers, fascinating though they be. By culture, I
mean an ongoing experimental system, a space of modification and
modulation, of figuring out and testing; culture is an experiment
that is hard to keep an eye on, one that changes quickly and some-
times starkly. Culture as an experimental system crosses economies
and governments, networked social spheres, and the infrastructure
of knowledge and power within which our world functions today—
or fails to. Free Software, as a cultural practice, weaves together a
surprising range of places, objects, and people; it contains patterns,
thresholds, and repetitions that are not simple or immediately obvi-
ous, either to the geeks who make Free Software or to those who
want to understand it. It is my goal in this book to reveal some of
those complex patterns and thresholds, both historically and an-
thropologically, and to explain not just what Free Software is but
also how it has emerged in the recent past and will continue to
change in the near future.�

The significance of Free Software extends far beyond the arcane
and detailed technical practices of software programmers and
“geeks” (as I refer to them herein). Since about 1998, the practices
and ideas of Free Software have extended into new realms of life
and creativity: from software to music and film to science, engineer-
ing, and education; from national politics of intellectual property
to global debates about civil society; from UNIX to Mac OS X and
Windows; from medical records and databases to international dis-
ease monitoring and synthetic biology; from Open Source to open
access. Free Software is no longer only about software—it exempli-
fies a more general reorientation of power and knowledge.

The terms Free Software and Open Source don’t quite capture the
extent of this reorientation or their own cultural significance. They

�introduction

refer, quite narrowly, to the practice of creating software—an ac-
tivity many people consider to be quite far from their experience.
However, creating Free Software is more than that: it includes a
unique combination of more familiar practices that range from
creating and policing intellectual property to arguing about the
meaning of “openness” to organizing and coordinating people and
machines across locales and time zones. Taken together, these prac-
tices make Free Software distinct, significant, and meaningful both
to those who create it and to those who take the time to understand
how it comes into being.

In order to analyze and illustrate the more general cultural sig-
nificance of Free Software and its consequences, I introduce the
concept of a “recursive public.” A recursive public is a public that is
vitally concerned with the material and practical maintenance and modi-
fication of the technical, legal, practical, and conceptual means of its
own existence as a public; it is a collective independent of other forms of
constituted power and is capable of speaking to existing forms of power
through the production of actually existing alternatives. Free Software
is one instance of this concept, both as it has emerged in the recent
past and as it undergoes transformation and differentiation in the
near future. There are other instances, including those that emerge
from the practices of Free Software, such as Creative Commons,
the Connexions project, and the Open Access movement in science.
These latter instances may or may not be Free Software, or even
“software” projects per se, but they are connected through the same
practices, and what makes them significant is that they may also
be “recursive publics” in the sense I explore in this book. Recursive
publics, and publics generally, differ from interest groups, corpora-
tions, unions, professions, churches, and other forms of organization
because of their focus on the radical technological modifiability of
their own terms of existence. In any public there inevitably arises
a moment when the question of how things are said, who controls
the means of communication, or whether each and everyone is be-
ing properly heard becomes an issue. A legitimate public sphere is
one that gives outsiders a way in: they may or may not be heard,
but they do not have to appeal to any authority (inside or outside
the organization) in order to have a voice.� Such publics are not
inherently modifiable, but are made so—and maintained—through
the practices of participants. It is possible for Free Software as we
know it to cease to be public, or to become just one more settled

� introduction

form of power, but my focus is on the recent past and near future
of something that is (for the time being) public in a radical and
novel way.

The concept of a recursive public is not meant to apply to any and
every instance of a public—it is not a replacement for the concept
of a “public sphere”—but is intended rather to give readers a spe-
cific and detailed sense of the non-obvious, but persistent threads
that form the warp and weft of Free Software and to analyze simi-
lar and related projects that continue to emerge from it as novel
and unprecedented forms of publicity and political action.

At first glance, the thread tying these projects together seems to
be the Internet. And indeed, the history and cultural significance of
Free Software has been intricately mixed up with that of the Inter-
net over the last thirty years. The Internet is a unique platform—
an environment or an infrastructure—for Free Software. But the
Internet looks the way it does because of Free Software. Free Soft-
ware and the Internet are related like figure and ground or like
system and environment; neither are stable or unchanging in and of
themselves, and there are a number of practical, technical, and his-
torical places where the two are essentially indistinguishable. The
Internet is not itself a recursive public, but it is something vitally
important to that public, something about which such publics care
deeply and act to preserve. Throughout this book, I will return to
these three phenomena: the Internet, a heterogeneous and diverse,
though singular, infrastructure of technologies and uses; Free Soft-
ware, a very specific set of technical, legal, and social practices that
now require the Internet; and recursive publics, an analytic concept
intended to clarify the relation of the first two.

Both the Internet and Free Software are historically specific, that
is, not just any old new media or information technology. But the In-
ternet is many, many specific things to many, many specific people.
As one reviewer of an early manuscript version of this book noted,
“For most people, the Internet is porn, stock quotes, Al Jazeera
clips of executions, Skype, seeing pictures of the grandkids, porn,
never having to buy another encyclopedia, MySpace, e-mail, online
housing listings, Amazon, Googling potential romantic interests,
etc. etc.” It is impossible to explain all of these things; the meaning
and significance of the proliferation of digital pornography is a
very different concern than that of the fall of the print encyclopedia

�introduction

and the rise of Wikipedia. Yet certain underlying practices relate
these diverse phenomena to one another and help explain why they
have occurred at this time and in this technical, legal, and social
context. By looking carefully at Free Software and its modulations,
I suggest, one can come to a better understanding of the changes
affecting pornography, Wikipedia, stock quotes, and many other
wonderful and terrifying things.�

Two Bits has three parts. Part I of this book introduces the reader
to the concept of recursive publics by exploring the lives, works,
and discussions of an international community of geeks brought to-
gether by their shared interest in the Internet. Chapter 1 asks, in an
ethnographic voice, “Why do geeks associate with one another?”
The answer—told via the story of Napster in �000 and the stan-
dards process at the heart of the Internet—is that they are making
a recursive public. Chapter � explores the words and attitudes of
geeks more closely, focusing on the strange stories they tell (about
the Protestant Reformation, about their practical everyday poly-
mathy, about progress and enlightenment), stories that make sense
of contemporary political economy in sometimes surprising ways.
Central to part I is an explication of the ways in which geeks argue
about technology but also argue with and through it, by building,
modifying, and maintaining the very software, networks, and legal
tools within which and by which they associate with one another.
It is meant to give the reader a kind of visceral sense of why certain
arrangements of technology, organization, and law—specifically
that of the Internet and Free Software—are so vitally important to
these geeks.

Part II takes a step back from ethnographic engagement to ask,
“What is Free Software and why has it emerged at this point in
history?” Part II is a historically detailed portrait of the emergence
of Free Software beginning in 1998–99 and stretching back in time
as far as the late 1950s; it recapitulates part I by examining Free
Software as an exemplar of a recursive public. The five chapters
in part II tell a coherent historical story, but each is focused on a
separate component of Free Software. The stories in these chapters
help distinguish the figure of Free Software from the ground of the
Internet. The diversity of technical practices, economic concerns,
information technologies, and legal and organizational practices
is huge, and these five chapters distinguish and describe the spe-
cific practices in their historical contexts and settings: practices of

� introduction

proselytizing and arguing, of sharing, porting, and forking source
code, of conceptualizing openness and open systems, of creating
Free Software copyright, and of coordinating people and source
code.

Part III returns to ethnographic engagement, analyzing two re-
lated projects inspired by Free Software which modulate one or
more of the five components discussed in part II, that is, which take
the practices as developed in Free Software and experiment with
making something new and different. The two projects are Creative
Commons, a nonprofit organization that creates copyright licenses,
and Connexions, a project to develop an online scholarly textbook
commons. By tracing the modulations of practices in detail, I ask,
“Are these projects still Free Software?” and “Are these projects still
recursive publics?” The answer to the first questions reveals how
Free Software’s flexible practices are influencing specific forms of
practice far from software programming, while the answer to the
second question helps explain how Free Software, Creative Com-
mons, Connexions, and projects like them are all related, strategic
responses to the reorientation of power and knowledge. The conclu-
sion raises a series of questions intended to help scholars looking at
related phenomena.

Recursive Publics and the Reorientation of Power
and Knowledge

Governance and control of the creation and dissemination of knowl-
edge have changed considerably in the context of the Internet over
the last thirty years. Nearly all kinds of media are easier to produce,
publish, circulate, modify, mash-up, remix, or reuse. The number
of such creations, circulations, and borrowings has exploded, and
the tools of knowledge creation and circulation—software and
networks—have also become more and more pervasively available.
The results have also been explosive and include anxieties about
validity, quality, ownership and control, moral panics galore, and
new concerns about the shape and legitimacy of global “intellec-
tual property” systems. All of these concerns amount to a reorienta-
tion of knowledge and power that is incomplete and emergent, and
whose implications reach directly into the heart of the legitimacy,
certainty, reliability and especially the finality and temporality of

�introduction

the knowledge and infrastructures we collectively create. It is a re-
orientation at once more specific and more general than the grand
diagnostic claims of an “information” or “network” society, or the
rise of knowledge work or knowledge-based economies; it is more
specific because it concerns precise and detailed technical and legal
practices, more general because it is a cultural reorientation, not
only an economic or legal one.

Free Software exemplifies this reorientation; it is not simply a
technical pursuit but also the creation of a “public,” a collective
that asserts itself as a check on other constituted forms of power—
like states, the church, and corporations—but which remains inde-
pendent of these domains of power.� Free Software is a response to
this reorientation that has resulted in a novel form of democratic
political action, a means by which publics can be created and main-
tained in forms not at all familiar to us from the past. Free Software
is a public of a particular kind: a recursive public. Recursive publics
are publics concerned with the ability to build, control, modify, and
maintain the infrastructure that allows them to come into being in
the first place and which, in turn, constitutes their everyday practi-
cal commitments and the identities of the participants as creative
and autonomous individuals. In the cases explored herein, that spe-
cific infrastructure includes the creation of the Internet itself, as
well as its associated tools and structures, such as Usenet, e-mail,
the World Wide Web (www), UNIX and UNIX-derived operating
systems, protocols, standards, and standards processes. For the last
thirty years, the Internet has been the subject of a contest in which
Free Software has been both a central combatant and an important
architect.

By calling Free Software a recursive public, I am doing two things:
first, I am drawing attention to the democratic and political signifi-
cance of Free Software and the Internet; and second, I am suggest-
ing that our current understanding (both academic and colloquial)
of what counts as a self-governing public, or even as “the public,”
is radically inadequate to understanding the contemporary reori-
entation of knowledge and power. The first case is easy to make:
it is obvious that there is something political about Free Software,
but most casual observers assume, erroneously, that it is simply
an ideological stance and that it is anti–intellectual property or
technolibertarian. I hope to show how geeks do not start with ide-
ologies, but instead come to them through their involvement in the

8 introduction

practices of creating Free Software and its derivatives. To be sure,
there are ideologues aplenty, but there are far more people who
start out thinking of themselves as libertarians or liberators, but
who become something quite different through their participation
in Free Software.

The second case is more complex: why another contribution to
the debate about the public and public spheres? There are two
reasons I have found it necessary to invent, and to attempt to make
precise, the concept of a recursive public: the first is to signal the
need to include within the spectrum of political activity the cre-
ation, modification, and maintenance of software, networks, and
legal documents. Coding, hacking, patching, sharing, compiling,
and modifying of software are forms of political action that now
routinely accompany familiar political forms of expression like
free speech, assembly, petition, and a free press. Such activities are
expressive in ways that conventional political theory and social
science do not recognize: they can both express and “implement”
ideas about the social and moral order of society. Software and
networks can express ideas in the conventional written sense as
well as create (express) infrastructures that allow ideas to circulate
in novel and unexpected ways. At an analytic level, the concept of
a recursive public is a way of insisting on the importance to public
debate of the unruly technical materiality of a political order, not
just the embodied discourse (however material) about that order.
Throughout this book, I raise the question of how Free Software
and the Internet are themselves a public, as well as what that pub-
lic actually makes, builds, and maintains.

The second reason I use the concept of a recursive public is that
conventional publics have been described as “self-grounding,” as
constituted only through discourse in the conventional sense of
speech, writing, and assembly.� Recursive publics are “recursive”
not only because of the “self-grounding” of commitments and iden-
tities but also because they are concerned with the depth or strata
of this self-grounding: the layers of technical and legal infrastruc-
ture which are necessary for, say, the Internet to exist as the infra-
structure of a public. Every act of self-grounding that constitutes a
public relies in turn on the existence of a medium or ground through
which communication is possible—whether face-to-face speech,
epistolary communication, or net-based assembly—and recursive
publics relentlessly question the status of these media, suggesting

9introduction

that they, too, must be independent for a public to be authentic. At
each of these layers, technical and legal and organizational deci-
sions can affect whether or not the infrastructure will allow, or
even ensure, the continued existence of the recursive publics that
are concerned with it. Recursive publics’ independence from power
is not absolute; it is provisional and structured in response to the
historically constituted layering of power and control within the
infrastructures of computing and communication.

For instance, a very important aspect of the contemporary In-
ternet, and one that has been fiercely disputed (recently under
the banner of “net neutrality”), is its singularity: there is only one
Internet. This was not an inevitable or a technically determined
outcome, but the result of a contest in which a series of decisions
were made about layers ranging from the very basic physical con-
figuration of the Internet (packet-switched networks and routing
systems indifferent to data types), to the standards and protocols
that make it work (e.g., TCP/IP or DNS), to the applications that
run on it (e-mail, www, ssh). The outcome of these decisions has
been to privilege the singularity of the Internet and to champion
its standardization, rather than to promote its fragmentation into
multiple incompatible networks. These same kinds of decisions are
routinely discussed, weighed, and programmed in the activity of
various Free Software projects, as well as its derivatives. They are,
I claim, decisions embedded in imaginations of order that are si-
multaneously moral and technical.

By contrast, governments, corporations, nongovernmental orga-
nizations (NGOs), and other institutions have plenty of reasons—
profit, security, control—to seek to fragment the Internet. But it is
the check on this power provided by recursive publics and espe-
cially the practices that now make up Free Software that has kept
the Internet whole to date. It is a check on power that is by no
means absolute, but is nonetheless rigorously and technically con-
cerned with its legitimacy and independence not only from state-
based forms of power and control, but from corporate, commercial,
and nongovernmental power as well. To the extent that the Internet
is public and extensible (including the capability of creating private
subnetworks), it is because of the practices discussed herein and
their culmination in a recursive public.

Recursive publics respond to governance by directly engaging in,
maintaining, and often modifying the infrastructure they seek, as a

10 introduction

public, to inhabit and extend—and not only by offering opinions or
protesting decisions, as conventional publics do (in most theories
of the public sphere). Recursive publics seek to create what might
be understood, enigmatically, as a constantly “self-leveling” level
playing field. And it is in the attempt to make the playing field
self-leveling that they confront and resist forms of power and con-
trol that seek to level it to the advantage of one or another large
constituency: state, government, corporation, profession. It is im-
portant to understand that geeks do not simply want to level the
playing field to their advantage—they have no affinity or identity
as such. Instead, they wish to devise ways to give the playing field
a certain kind of agency, effected through the agency of many dif-
ferent humans, but checked by its technical and legal structure and
openness. Geeks do not wish to compete qua capitalists or entre-
preneurs unless they can assure themselves that (qua public actors)
that they can compete fairly. It is an ethic of justice shot through
with an aesthetic of technical elegance and legal cleverness.

The fact that recursive publics respond in this way—through di-
rect engagement and modification—is a key aspect of the reori-
entation of power and knowledge that Free Software exemplifies.
They are reconstituting the relationship between liberty and knowl-
edge in a technically and historically specific context. Geeks create
and modify and argue about licenses and source code and proto-
cols and standards and revision control and ideologies of freedom
and pragmatism not simply because these things are inherently or
universally important, but because they concern the relationship
of governance to the freedom of expression and nature of consent.
Source code and copyright licenses, revision control and mailing
lists are the pamphlets, coffeehouses, and salons of the twenty-first
century: Tischgesellschaften become Schreibtischgesellschaften.�

The “reorientation of power and knowledge” has two key as-
pects that are part of the concept of recursive publics: availability
and modifiability (or adaptability). Availability is a broad, dif-
fuse, and familiar issue. It includes things like transparency, open
governance or transparent organization, secrecy and freedom of
information, and open access in science. Availability includes the
business-school theories of “disintermediation” and “transparency
and accountability” and the spread of “audit culture” and so-called
neoliberal regimes of governance; it is just as often the subject of
suspicion as it is a kind of moral mandate, as in the case of open

11introduction

access to scientific results and publications.8 All of these issues are
certainly touched on in detailed and practical ways in the creation
of Free Software. Debates about the mode of availability of infor-
mation made possible in the era of the Internet range from digital-
rights management and copy protection, to national security and
corporate espionage, to scientific progress and open societies.

However, it is modifiability that is the most fascinating, and un-
nerving, aspect of the reorientation of power and knowledge. Modi-
fiability includes the ability not only to access—that is, to reuse in
the trivial sense of using something without restrictions—but to
transform it for use in new contexts, to different ends, or in order
to participate directly in its improvement and to redistribute or re-
circulate those improvements within the same infrastructures while
securing the same rights for everyone else. In fact, the core practice
of Free Software is the practice of reuse and modification of soft-
ware source code. Reuse and modification are also the key ideas
that projects modeled on Free Software (such as Connexions and
Creative Commons) see as their goal. Creative Commons has as its
motto “Culture always builds on the past,” and they intend that to
mean “through legal appropriation and modification.” Connexions,
which allows authors to create online bits and pieces of textbooks
explicitly encourages authors to reuse work by other people, to
modify it, and to make it their own. Modifiability therefore raises a
very specific and important question about finality. When is some-
thing (software, a film, music, culture) finished? How long does it
remain finished? Who decides? Or more generally, what does its
temporality look like, and how does that temporality restructure
political relationships? Such issues are generally familiar only to
historians and literary scholars who understand the transforma-
tion of canons, the interplay of imitation and originality, and the
theoretical questions raised, for instance, in textual scholarship.
But the contemporary meaning of modification includes both a vast
increase in the speed and scope of modifiability and a certain au-
tomation of the practice that was unfamiliar before the advent of
sophisticated, distributed forms of software.

Modifiability is an oft-claimed advantage of Free Software. It
can be updated, modified, extended, or changed to deal with other
changing environments: new hardware, new operating systems,
unforeseen technologies, or new laws and practices. At an infra-
structural level, such modifiability makes sense: it is a response to

1� introduction

and an alternative to technocratic forms of planning. It is a way of
planning in the ability to plan out; an effort to continuously secure
the ability to deal with surprise and unexpected outcomes; a way of
making flexible, modifiable infrastructures like the Internet as safe
as permanent, inflexible ones like roads and bridges.

But what is the cultural significance of modifiability? What does
it mean to plan in modifiability to culture, to music, to education
and science? At a clerical level, such a question is obvious when-
ever a scholar cannot recover a document written in WordPerfect
�.0 or on a disk for which there are no longer disk drives, or when
a library archive considers saving both the media and the machines
that read that media. Modifiability is an imperative for building
infrastructures that can last longer. However, it is not only a so-
lution to a clerical problem: it creates new possibilities and new
problems for long-settled practices like publication, or the goals
and structure of intellectual-property systems, or the definition of
the finality, lifetime, monumentality, and especially, the identity
of a work. Long-settled, seemingly unassailable practices—like the
authority of published books or the power of governments to con-
trol information—are suddenly confounded and denaturalized by
the techniques of modifiability.

Over the last ten to fifteen years, as the Internet has spread expo-
nentially and insinuated itself into the most intimate practices of all
kinds of people, the issues of availability and modifiability and the
reorientation of knowledge and power they signify have become
commonplace. As this has happened, the significance and practices
associated with Free Software have also spread—and been modu-
lated in the process. These practices provide a material and mean-
ingful starting point for an array of recursive publics who play with,
modulate, and transform them as they debate and build new ways
to share, create, license, and control their respective productions.
They do not all share the same goals, immediate or long-term, but
by engaging in the technical, legal, and social practices pioneered
in Free Software, they do in fact share a “social imaginary” that
defines a particular relationship between technology, organs of
governance (whether state, corporate, or nongovernmental), and
the Internet. Scientists in a lab or musicians in a band; scholars
creating a textbook or social movements contemplating modes of
organization and protest; government bureaucrats issuing data
or journalists investigating corruption; corporations that manage

1�introduction

personal data or co-ops that monitor community development—
all these groups and others may find themselves adopting, modu-
lating, rejecting, or refining the practices that have made up Free
Software in the recent past and will do so in the near future.

Experiment and Modulation

What exactly is Free Software? This question is, perhaps surpris-
ingly, an incredibly common one in geek life. Debates about def-
inition and discussions and denunciations are ubiquitous. As an
anthropologist, I have routinely participated in such discussions
and debates, and it is through my immediate participation that
Two Bits opens. In part I I tell stories about geeks, stories that are
meant to give the reader that classic anthropological sense of be-
ing thrown into another world. The stories reveal several general
aspects of what geeks talk about and how they do so, without get-
ting into what Free Software is in detail. I start in this way because
my project started this way. I did not initially intend to study Free
Software, but it was impossible to ignore its emergence and mani-
fest centrality to geeks. The debates about the definition of Free
Software that I participated in online and in the field eventually
led me away from studying geeks per se and turned me toward the
central research concern of this book: what is the cultural signifi-
cance of Free Software?

In part II what I offer is not a definition of Free Software, but
a history of how it came to be. The story begins in 1998, with an
important announcement by Netscape that it would give away the
source code to its main product, Netscape Navigator, and works
backward from this announcement into the stories of the UNIX
operating system, “open systems,” copyright law, the Internet, and
tools for coordinating people and code. Together, these five stories
constitute a description of how Free Software works as a practice.
As a cultural analysis, these stories highlight just how experimental
the practices are, and how individuals keep track of and modulate
the practices along the way.

Netscape’s decision came at an important point in the life of Free
Software. It was at just this moment that Free Software was be-
coming aware of itself as a coherent movement and not just a di-
verse amalgamation of projects, tools, or practices. Ironically, this

1� introduction

recognition also betokened a split: certain parties started to insist
that the movement be called “Open Source” software instead, to
highlight the practical over the ideological commitments of the
movement. The proposal itself unleashed an enormous public dis-
cussion about what defined Free Software (or Open Source). This
enigmatic event, in which a movement became aware of itself at
the same time that it began to question its mission, is the subject
of chapter �. I use the term movement to designate one of the five
core components of Free Software: the practices of argument and
disagreement about the meaning of Free Software. Through these
practices of discussion and critique, the other four practices start to
come into relief, and participants in both Free Software and Open
Source come to realize something surprising: for all the ideologi-
cal distinctions at the level of discourse, they are doing exactly the
same thing at the level of practice. The affect-laden histrionics with
which geeks argue about the definition of what makes Free Soft-
ware free or Open Source open can be matched only by the sober
specificity of the detailed practices they share.

The second component of Free Software is just such a mundane
activity: sharing source code (chapter �). It is an essential and fun-
damentally routine practice, but one with a history that reveals
the goals of software portability, the interactions of commercial
and academic software development, and the centrality of source
code (and not only of abstract concepts) in pedagogical settings.
The details of “sharing” source code also form the story of the rise
and proliferation of the UNIX operating system and its myriad de-
rivatives.

The third component, conceptualizing openness (chapter �), is
about the specific technical and “moral” meanings of openness,
especially as it emerged in the 1980s in the computer industry’s
debates over “open systems.” These debates concerned the creation
of a particular infrastructure, including both technical standards
and protocols (a standard UNIX and protocols for networks), and
an ideal market infrastructure that would allow open systems to
flourish. Chapter 5 is the story of the failure to achieve a market
infrastructure for open systems, in part due to a significant blind
spot: the role of intellectual property.

The fourth component, applying copyright (and copyleft) licenses
(chapter �), involves the problem of intellectual property as it faced
programmers and geeks in the late 19�0s and early 1980s. In this

1�introduction

chapter I detail the story of the first Free Software license—the
GNU General Public License (GPL)—which emerged out of a con-
troversy around a very famous piece of software called EMACS.
The controversy is coincident with changing laws (in 19�� and
1980) and changing practices in the software industry—a general
drift from trade secret to copyright protection—and it is also a story
about the vaunted “hacker ethic” that reveals it in its native practi-
cal setting, rather than as a rarefied list of rules.

The fifth component, the practice of coordination and collabora-
tion (chapter �), is the most talked about: the idea of tens or hun-
dreds of thousands of people volunteering their time to contribute
to the creation of complex software. In this chapter I show how
novel forms of coordination developed in the 1990s and how they
worked in the canonical cases of Apache and Linux; I also highlight
how coordination facilitates the commitment to adaptability (or
modifiability) over against planning and hierarchy, and how this
commitment resolves the tension between individual virtuosity and
the need for collective control.

Taken together, these five components make up Free Software—
but they are not a definition. Within each of these five practices,
many similar and dissimilar activities might reasonably be in-
cluded. The point of such a redescription of the practices of Free
Software is to conceptualize them as a kind of collective technical
experimental system. Within each component are a range of differ-
ences in practice, from conventional to experimental. At the cen-
ter, so to speak, are the most common and accepted versions of a
practice; at the edges are more unusual or controversial versions.
Together, the components make up an experimental system whose
infrastructure is the Internet and whose “hypotheses” concern the
reorientation of knowledge and power.

For example, one can hardly have Free Software without source
code, but it need not be written in C (though the vast majority
of it is); it can be written in Java or perl or TeX. However, if one
stretches the meaning of source code to include music (sheet music
as source and performance as binary), what happens? Is this still
Free Software? What happens when both the sheet and the per-
formance are “born digital”? Or, to take a different example, Free
Software requires Free Software licenses, but the terms of these
licenses are often changed and often heatedly discussed and vigi-
lantly policed by geeks. What degree of change removes a license

1� introduction

from the realm of Free Software and why? How much flexibility is
allowed?

Conceived this way, Free Software is a system of thresholds,
not of classification; the excitement that participants and observ-
ers sense comes from the modulation (experimentation) of each of
these practices and the subsequent discovery of where the thresh-
olds are. Many, many people have written their own “Free Soft-
ware” copyright licenses, but only some of them remain within the
threshold of the practice as defined by the system. Modulations
happen whenever someone learns how some component of Free
Software works and asks, “Can I try these practices out in some
other domain?”

The reality of constant modulation means that these five practices
do not define Free Software once and for all; they define it with re-
spect to its constitution in the contemporary. It is a set of practices
defined “around the point” 1998–99, an intensive coordinate space
that allows one to explore Free Software’s components prospec-
tively and retrospectively: into the near future and the recent past.
Free Software is a machine for charting the (re)emergence of a
problematic of power and knowledge as it is filtered through the
technical realities of the Internet and the political and economic
configuration of the contemporary. Each of these practices has its
own temporality of development and emergence, but they have re-
cently come together into this full house called either Free Software
or Open Source.9

Viewing Free Software as an experimental system has a strategic
purpose in Two Bits. It sets the stage for part III, wherein I ask what
kinds of modulations might no longer qualify as Free Software per
se, but still qualify as recursive publics. It was around �000 that
talk of “commons” began to percolate out of discussions about Free
Software: commons in educational materials, commons in biodi-
versity materials, commons in music, text, and video, commons in
medical data, commons in scientific results and data.10 On the one
hand, it was continuous with interest in creating “digital archives”
or “online collections” or “digital libraries”; on the other hand, it
was a conjugation of the digital collection with the problems and
practices of intellectual property. The very term commons—at once
a new name and a theoretical object of investigation—was meant
to suggest something more than simply a collection, whether of

1�introduction

digital objects or anything else; it was meant to signal the public in-
terest, collective management, and legal status of the collection.11

In part III, I look in detail at two “commons” understood as mod-
ulations of the component practices of Free Software. Rather than
treating commons projects simply as metaphorical or inspirational
uses of Free Software, I treat them as modulations, which allows me
to remain directly connected to the changing practices involved.
The goal of part III is to understand how commons projects like
Connexions and Creative Commons breach the thresholds of these
practices and yet maintain something of the same orientation.
What changes, for instance, have made it possible to imagine new
forms of free content, free culture, open source music, or a science
commons? What happens as new communities of people adopt and
modulate the five component practices? Do they also become re-
cursive publics, concerned with the maintenance and expansion of
the infrastructures that allow them to come into being in the first
place? Are they concerned with the implications of availability and
modifiability that continue to unfold, continue to be figured out, in
the realms of education, music, film, science, and writing?

The answers in part III make clear that, so far, these concerns are
alive and well in the modulations of Free Software: Creative Com-
mons and Connexions each struggle to come to terms with new ways
of creating, sharing, and reusing content in the contemporary legal
environment, with the Internet as infrastructure. Chapters 8 and
9 provide a detailed analysis of a technical and legal experiment:
a modulation that begins with source code, but quickly requires
modulations in licensing arrangements and forms of coordination.
It is here that Two Bits provides the most detailed story of figuring
out set against the background of the reorientation of knowledge
and power. This story is, in particular, one of reuse, of modifiability
and the problems that emerge in the attempt to build it into the
everyday practices of pedagogical writing and cultural production
of myriad forms. Doing so leads the actors involved directly to the
question of the existence and ontology of norms: norms of scholarly
production, borrowing, reuse, citation, reputation, and ownership.
These last chapters open up questions about the stability of modern
knowledge, not as an archival or a legal problem, but as a social
and normative one; they raise questions about the invention and
control of norms, and the forms of life that may emerge from these

18 introduction

practices. Recursive publics come to exist where it is clear that such
invention and control need to be widely shared, openly examined,
and carefully monitored.

Three Ways of Looking at Two Bits

Two Bits makes three kinds of scholarly contributions: empiri-
cal, methodological, and theoretical. Because it is based largely
on fieldwork (which includes historical and archival work), these
three contributions are often mixed up with each other. Fieldwork,
especially in cultural and social anthropology in the last thirty
years, has come to be understood less and less as one particular
tool in a methodological toolbox, and more and more as distinctive
mode of epistemological encounter.1� The questions I began with
emerged out of science and technology studies, but they might end
up making sense to a variety of fields, ranging from legal studies
to computer science.

Empirically speaking, the actors in my stories are figuring some-
thing out, something unfamiliar, troubling, imprecise, and oc-
casionally shocking to everyone involved at different times and
to differing extents.1� There are two kinds of figuring-out stories:
the contemporary ones in which I have been an active participant
(those of Connexions and Creative Commons), and the historical
ones conducted through “archival” research and rereading of cer-
tain kinds of texts, discussions, and analyses-at-the-time (those of
UNIX, EMACS, Linux, Apache, and Open Systems). Some are stories
of technical figuring out, but most are stories of figuring out a prob-
lem that appears to have emerged. Some of these stories involve
callow and earnest actors, some involve scheming and strategy,
but in all of them the figuring out is presented “in the making”
and not as something that can be conveniently narrated as obvi-
ous and uncontested with the benefit of hindsight. Throughout this
book, I tell stories that illustrate what geeks are like in some re-
spects, but, more important, that show them in the midst of figuring
things out—a practice that can happen both in discussion and in
the course of designing, planning, executing, writing, debugging,
hacking, and fixing.

There are also myriad ways in which geeks narrate their own
actions to themselves and others, as they figure things out. Indeed,

19introduction

there is no crisis of representing the other here: geeks are vocal,
loud, persistent, and loquacious. The superalterns can speak for
themselves. However, such representations should not necessar-
ily be taken as evidence that geeks provide adequate analytic or
critical explanations of their own actions. Some of the available
writing provides excellent description, but distracting analysis. Eric
Raymond’s work is an example of such a combination.1� Over the
course of my fieldwork, Raymond’s work has always been present
as an excellent guide to the practices and questions that plague
geeks—much like a classic “principal informant” in anthropology.
And yet his analyses, which many geeks subscribe to, are distract-
ing. They are fanciful, occasionally enjoyable and enlightening—
but they are not about the cultural significance of Free Software. As
such I am less interested in treating geeks as natives to be explained
and more interested in arguing with them: the people in Two Bits
are a sine qua non of the ethnography, but they are not the objects
of its analysis.1�

Because the stories I tell here are in fact recent by the standards
of historical scholarship, there is not much by way of comparison
in terms of the empirical material. I rely on a number of books
and articles on the history of the early Internet, especially Janet
Abbate’s scholarship and the single historical work on UNIX, Peter
Salus’s A Quarter Century of Unix.1� There are also a couple of ex-
cellent journalistic works, such as Glyn Moody’s Rebel Code: Inside
Linux and the Open Source Revolution (which, like Two Bits, relies
heavily on the novel accessibility of detailed discussions carried out
on public mailing lists). Similarly, the scholarship on Free Software
and its history is just starting to establish itself around a coherent
set of questions.1�

Methodologically, Two Bits provides an example of how to study
distributed phenomena ethnographically. Free Software and the In-
ternet are objects that do not have a single geographic site at which
they can be studied. Hence, this work is multisited in the simple
sense of having multiple sites at which these objects were investi-
gated: Boston, Bangalore, Berlin, Houston. It was conducted among
particular people, projects, and companies and at conferences and
online gatherings too numerous to list, but it has not been a study
of a single Free Software project distributed around the globe. In all
of these places and projects the geeks I worked with were randomly
and loosely affiliated people with diverse lives and histories. Some

�0 introduction

identified as Free Software hackers, but most did not. Some had never
met each other in real life, and some had. They represented mul-
tiple corporations and institutions, and came from diverse nations,
but they nonetheless shared a certain set of ideas and idioms that
made it possible for me to travel from Boston to Berlin to Bangalore
and pick up an ongoing conversation with different people, in very
different places, without missing a beat.

The study of distributed phenomena does not necessarily im-
ply the detailed, local study of each instance of a phenomenon,
nor does it necessitate visiting every relevant geographical site—
indeed, such a project is not only extremely difficult, but confuses
map and territory. As Max Weber put it, “It is not the ‘actual’ inter-
connection of ‘things’ but the conceptual inter-connection of prob-
lems that define the scope of the various sciences.”18 The decisions
about where to go, whom to study, and how to think about Free
Software are arbitrary in the precise sense that because the phe-
nomena are so widely distributed, it is possible to make any given
node into a source of rich and detailed knowledge about the dis-
tributed phenomena itself, not only about the local site. Thus, for
instance, the Connexions project would probably have remained
largely unknown to me had I not taken a job in Houston, but it
nevertheless possesses precise, identifiable connections to the other
sites and sets of people that I have studied, and is therefore rec-
ognizable as part of this distributed phenomena, rather than some
other. I was actively looking for something like Connexions in order
to ask questions about what was becoming of Free Software and
how it was transforming. Had there been no Connexions in my back
yard, another similar field site would have served instead.

It is in this sense that the ethnographic object of this study is not
geeks and not any particular project or place or set of people, but
Free Software and the Internet. Even more precisely, the ethno-
graphic object of this study is “recursive publics”—except that this
concept is also the work of the ethnography, not its preliminary
object. I could not have identified “recursive publics” as the object
of the ethnography at the outset, and this is nice proof that ethno-
graphic work is a particular kind of epistemological encounter, an
encounter that requires considerable conceptual work during and
after the material labor of fieldwork, and throughout the mate-
rial labor of writing and rewriting, in order to make sense of and
reorient it into a question that will have looked deliberate and

�1introduction

answerable in hindsight. Ethnography of this sort requires a long-
term commitment and an ability to see past the obvious surface
of rapid transformation to a more obscure and slower temporality
of cultural significance, yet still pose questions and refine debates
about the near future.19 Historically speaking, the chapters of part
II can be understood as a contribution to a history of scientific
infrastructure—or perhaps to an understanding of large-scale, col-
lective experimentation.�0 The Internet and Free Software are each
an important practical transformation that will have effects on the
practice of science and a kind of complex technical practice for
which there are few existing models of study.

A methodological note about the peculiarity of my subject is also
in order. The Attentive Reader will note that there are very few
fragments of conventional ethnographic material (i.e., interviews
or notes) transcribed herein. Where they do appear, they tend to be
“publicly available”—which is to say, accessible via the Internet—
and are cited as such, with as much detail as necessary to allow the
reader to recover them. Conventional wisdom in both anthropology
and history has it that what makes a study interesting, in part, is
the work a researcher has put into gathering that which is not al-
ready available, that is, primary sources as opposed to secondary
sources. In some cases I provide that primary access (specifically in
chapters �, 8, and 9), but in many others it is now literally impossi-
ble: nearly everything is archived. Discussions, fights, collaborations,
talks, papers, software, articles, news stories, history, old software,
old software manuals, reminiscences, notes, and drawings—it is all
saved by someone, somewhere, and, more important, often made
instantly available by those who collect it. The range of conversa-
tions and interactions that count as private (either in the sense of
disappearing from written memory or of being accessible only to
the parties involved) has shrunk demonstrably since about 1981.

Such obsessive archiving means that ethnographic research is
stratified in time. Questions that would otherwise have required
“being there” are much easier to research after the fact, and this
is most evident in my reconstruction from sources on USENET and
mailing lists in chapters 1, �, and �. The overwhelming availability
of quasi-archival materials is something I refer to, in a play on the
EMACS text editor, as “self-documenting history.” That is to say,
one of the activities that geeks love to participate in, and encour-
age, is the creation, analysis, and archiving of their own roles in the

�� introduction

development of the Internet. No matter how obscure or arcane, it
seems most geeks have a well-developed sense of possibility—their
contribution could turn out to have been transformative, important,
originary. What geeks may lack in social adroitness, they make up
for in archival hubris.

Finally, the theoretical contribution of Two Bits consists of a re-
finement of debates about publics, public spheres, and social imagi-
naries that appear troubled in the context of the Internet and Free
Software. Terminology such as virtual community, online community,
cyberspace, network society, or information society are generally not
theoretical constructs, but ways of designating a subgenre of disci-
plinary research having to do with electronic networks. The need
for a more precise analysis of the kinds of association that take
place on and through information technology is clear; the first step
is to make precise which information technologies and which spe-
cific practices make a difference.

There is a relatively large and growing literature on the Internet
as a public sphere, but such literature is generally less concerned
with refining the concept through research and more concerned
with pronouncing whether or not the Internet fits Habermas’s defi-
nition of the bourgeois public sphere, a definition primarily con-
ceived to account for the eighteenth century in Britain, not the
twenty-first-century Internet.�1 The facts of technical and human
life, as they unfold through the Internet and around the practices
of Free Software, are not easy to cram into Habermas’s definition.
The goal of Two Bits is not to do so, but to offer conceptual clarity
based in ethnographic fieldwork.

The key texts for understanding the concept of recursive publics
are the works of Habermas, Charles Taylor’s Modern Social Imagi-
naries, and Michael Warner’s The Letters of the Republic and Publics
and Counterpublics. Secondary texts that refine these notions are
John Dewey’s The Public and Its Problems and Hannah Arendt’s The
Human Condition. Here it is not the public sphere per se that is the
center of analysis, but the “ideas of modern moral and social order”
and the terminology of “modern social imaginaries.”�� I find these
concepts to be useful as starting points for a very specific reason: to
distinguish the meaning of moral order from the meaning of moral
and technical order that I explore with respect to geeks. I do not seek
to test the concept of social imaginary here, but to build something
on top of it.

��introduction

If recursive public is a useful concept, it is because it helps elabo-
rate the general question of the “reorientation of knowledge and
power.” In particular it is meant to bring into relief the ways in
which the Internet and Free Software are related to the political
economy of modern society through the creation not only of new
knowledge, but of new infrastructures for circulating, maintaining,
and modifying it. Just as Warner’s book The Letters of the Republic
was concerned with the emergence of the discourse of republican-
ism and the simultaneous development of an American republic of
letters, or as Habermas’s analysis was concerned with the relation-
ship of the bourgeois public sphere to the democratic revolutions
of the eighteenth century, this book asks a similar series of ques-
tions: how are the emergent practices of recursive publics related
to emerging relations of political and technical life in a world that
submits to the Internet and its forms of circulation? Is there still
a role for a republic of letters, much less a species of public that
can seriously claim independence and autonomy from other consti-
tuted forms of power? Are Habermas’s pessimistic critiques of the
bankruptcy of the public sphere in the twentieth century equally ap-
plicable to the structures of the twenty-first century? Or is it possible
that recursive publics represent a reemergence of strong, authentic
publics in a world shot through with cynicism and suspicion about
mass media, verifiable knowledge, and enlightenment rationality?

Part I    the internet

The concept of the state, like most concepts which are introduced

by “The,” is both too rigid and too tied up with controversies to be

of ready use. It is a concept which can be approached by a flank

movement more easily than by a frontal attack. The moment we

utter the words “The State” a score of intellectual ghosts rise to

obscure our vision. Without our intention and without our notice,

the notion of “The State” draws us imperceptibly into a consider-

ation of the logical relationship of various ideas to one another, and

 away from the facts of human activity. It is better, if possible, to

start from the latter and see if we are not led thereby into an idea

of something which will turn out to implicate the marks and signs

which characterize political behavior.

—john dewey, The Public and Its Problems

1.Geeks and Recursive Publics

Since about 1997, I have been living with geeks online and off. I
have been drawn from Boston to Bangalore to Berlin to Houston to
Palo Alto, from conferences and workshops to launch parties, pubs,
and Internet Relay Chats (IRCs). All along the way in my research
questions of commitment and practice, of ideology and imagina-
tion have arisen, even as the exact nature of the connections be-
tween these people and ideas remained obscure to me: what binds
geeks together? As my fieldwork pulled me from a Boston start-up
company that worked with radiological images to media labs in
Berlin to young entrepreneurial elites in Bangalore, my logistical
question eventually developed into an analytical concept: geeks are
bound together as a recursive public.

How did I come to understand geeks as a public constituted
around the technical and moral ideas of order that allow them to
associate with one another? Through this question, one can start to
understand the larger narrative of Two Bits: that of Free Software

28 geeks and recursive publics

as an exemplary instance of a recursive public and as a set of prac-
tices that allow such publics to expand and spread. In this chapter I
describe, ethnographically, the diverse, dispersed, and novel forms
of entanglements that bind geeks together, and I construct the con-
cept of a recursive public in order to explain these entanglements.

A recursive public is a public that is constituted by a shared con-
cern for maintaining the means of association through which they
come together as a public. Geeks find affinity with one another
because they share an abiding moral imagination of the technical
infrastructure, the Internet, that has allowed them to develop and
maintain this affinity in the first place. I elaborate the concept of
recursive public (which is not a term used by geeks) in relation to
theories of ideology, publics, and public spheres and social imagi-
naries. I illustrate the concept through ethnographic stories and
examples that highlight geeks’ imaginations of the technical and
moral order of the Internet. These stories include those of the fate
of Amicas, a Boston-based healthcare start-up, between 1997 and
2003, of my participation with new media academics and activists
in Berlin in 1999–2001, and of the activities of a group of largely
Bangalore-based information technology (IT) professionals on and
offline, especially concerning the events surrounding the peer-to-
peer file sharing application Napster in 2000–2001.

The phrase “moral and technical order” signals both technology—
principally software, hardware, networks, and protocols—and an
imagination of the proper order of collective political and com-
mercial action, that is, how economy and society should be or-
dered collectively. Recursive publics are just as concerned with the
moral order of markets as they are with that of commons; they are
not anticommercial or antigovernment. They exist independent
of, and as a check on, constituted forms of power, which include
markets and corporations. Unlike other concepts of a public or of
a public sphere, “recursive public” captures the fact that geeks’
principal mode of associating and acting is through the medium of
the Internet, and it is through this medium that a recursive public
can come into being in the first place. The Internet is not itself a
public sphere, a public, or a recursive public, but a complex, het-
erogeneous infrastructure that constitutes and constrains geeks’
everyday practical commitments, their ability to “become public”
or to compose a common world. As such, their participation qua
recursive publics structures their identity as creative and autono-

29geeks and recursive publics

mous individuals. The fact that the geeks described here have been
brought together by mailing lists and e-mail, bulletin-board ser-
vices and Web sites, books and modems, air travel and academia,
and cross-talking and cross-posting in ways that were not possible
before the Internet is at the core of their own reasoning about why
they associate with each other. They are the builders and imagin-
ers of this space, and the space is what allows them to build and
imagine it.

Why recursive? I call such publics recursive for two reasons: first,
in order to signal that this kind of public includes the activities of
making, maintaining, and modifying software and networks, as
well as the more conventional discourse that is thereby enabled;
and second, in order to suggest the recursive “depth” of the pub-
lic, the series of technical and legal layers—from applications to
protocols to the physical infrastructures of waves and wires—that
are the subject of this making, maintaining, and modifying. The
first of these characteristics is evident in the fact that geeks use
technology as a kind of argument, for a specific kind of order: they
argue about technology, but they also argue through it. They express
ideas, but they also express infrastructures through which ideas can
be expressed (and circulated) in new ways. The second of these
characteristics—regarding layers—is reflected in the ability of
geeks to immediately see connections between, for example, Nap-
ster (a user application) and TCP/IP (a network protocol) and to
draw out implications for both of them. By connecting these layers,
Napster comes to represent the Internet in miniature. The question
of where these layers stop (hardware? laws and regulations? physi-
cal constants? etc.) circumscribes the limits of the imagination of
technical and moral order shared by geeks.

Above all, “recursive public” is a concept—not a thing. It is in-
tended to make distinctions, allow comparison, highlight salient
features, and relate two diverse kinds of things (the Internet and
Free Software) in a particular historical context of changing rela-
tions of power and knowledge. The stories in this chapter (and
throughout the book) give some sense of how geeks interact and
what they do technically and legally, but the concept of a recursive
public provides a way of explaining why geeks (or people involved
in Free Software or its derivatives) associate with one another, as
well as a way of testing whether other similar cases of contempo-
rary, technologically mediated affinity are similarly structured.

30 geeks and recursive publics

Recursion

Recursion (or “recursive”) is a mathematical concept, one which is a standard
feature of any education in computer programming. The definition from the
Oxford English Dictionary reads: “2. a. Involving or being a repeated procedure
such that the required result at each step except the last is given in terms of
the result(s) of the next step, until after a finite number of steps a terminus is
reached with an outright evaluation of the result.” It should be distinguished
from simple iteration or repetition. Recursion is always subject to a limit and
is more like a process of repeated deferral, until the last step in the process, at
which point all the deferred steps are calculated and the result given.

Recursion is powerful in programming because it allows for the definition
of procedures in terms of themselves—something that seems at first counter-
intuitive. So, for example,

 (defun (factorial n) ; This is the name of the function and its input n.
 (if (=n 1) ; This is the final limit, or recursive depth
 1 ; if n=1, then return 1
 (* n (factorial (- n 1))))) ; otherwise return n times factorial of n-1;
 ; call the procedure from within itself, and
 ; calculate the next step of the result before
 ; giving an answer.1

In Two Bits a recursive public is one whose existence (which consists solely in
address through discourse) is only possible through discursive and technical
reference to the means of creating this public. Recursiveness is always contin-
gent on a limit which determines the depth of a recursive procedure. So, for
instance, a Free Software project may depend on some other kind of software
or operating system, which may in turn depend on particular open protocols
or a particular process, which in turn depend on certain kinds of hardware
that implement them. The “depth” of recursion is determined by the openness
necessary for the project itself.

James Boyle has also noted the recursive nature, in particular, of Free Soft-
ware: “What’s more, and this is a truly fascinating twist, when the produc-
tion process does need more centralized coordination, some governance that
guides how the sticky modular bits are put together, it is at least theoretically
possible that we can come up with the control system in exactly the same way.
In this sense, distributed production is potentially recursive.”2

1. Abelson and Sussman, The Structure and Interpretation of Computer Programs, 30.
2. Boyle, “The Second Enclosure Movement and the Construction of the Public Do-

main,” 46.

31geeks and recursive publics

From the Facts of Human Activity

Boston, May 2003. Starbucks. Sean and Adrian are on their way
to pick me up for dinner. I’ve already had too much coffee, so I sit
at the window reading the paper. Eventually Adrian calls to find
out where I am, I tell him, and he promises to show up in fifteen
minutes. I get bored and go outside to wait, watch the traffic go
by. More or less right on time (only post-dotcom is Adrian ever on
time), Sean’s new blue VW Beetle rolls into view. Adrian jumps
out of the passenger seat and into the back, and I get in. Sean has
been driving for a little over a year. He seems confident, cautious,
but meanders through the streets of Cambridge. We are destined
for Winchester, a township on the Charles River, in order to go to
an Indian restaurant that one of Sean’s friends has recommended.
When I ask how they are doing, they say, “Good, good.” Adrian of-
fers, “Well, Sean’s better than he has been in two years.” “Really?”
I say, impressed.

Sean says, “Well, happier than at least the last year. I, well, let
me put it this way: forgive me father for I have sinned, I still have
unclean thoughts about some of the upper management in the com-
pany, I occasionally think they are not doing things in the best in-
terest of the company, and I see them as self-serving and sometimes
wish them ill.” In this rolling blue confessional Sean describes some
of the people who I am familiar with whom he now tries very hard
not to think about. I look at him and say, “Ten Hail Marys and
ten Our Fathers, and you will be absolved, my child.” Turning to
Adrian, I ask, “And what about you?” Adrian continues the joke:
“I, too, have sinned. I have reached the point where I can see abso-
lutely nothing good coming of this company but that I can keep my
investments in it long enough to pay for my children’s college tu-
ition.” I say, “You, my son, I cannot help.” Sean says, “Well, funny
thing about tainted money . . . there just taint enough of it.”

I am awestruck. When I met Sean and Adrian, in 1997, their
start-up company, Amicas, was full of spit, with five employees
working out of Adrian’s living room and big plans to revolution-
ize the medical-imaging world. They had connived to get Massa-
chusetts General Hospital to install their rudimentary system and
let it compete with the big corporate sloths that normally stalked
back offices: General Electric, Agfa, Siemens. It was these behe-
moths, according to Sean and Adrian, that were bilking hospitals

32 geeks and recursive publics

and healthcare providers with promises of cure-all technologies
and horribly designed “silos,” “legacy systems,” and other closed-
system monsters of corporate IT harkening back to the days of IBM
mainframes. These beasts obviously did not belong to the gleaming
future of Internet-enabled scalability. By June of 2000, Amicas had
hired new “professional” management, moved to Watertown, and
grown to about a hundred employees. They had achieved their goal
of creating an alternative Picture Archiving and Communication
System (PACS) for use in hospital radiology departments and based
on Internet standards.

At that point, in the spring of 2000, Sean could still cheerfully in-
troduce me to his new boss—the same man he would come to hate,
inasmuch as Sean hates anyone. But by 2002 he was frustrated by
the extraordinary variety of corner-cutting and, more particularly,
by the complacency with which management ignored his recom-
mendations and released software that was almost certainly going
to fail later, if not sooner. Sean, who is sort of permanently callow
about things corporate, could find no other explanation than that
the new management was evil.

But by 2003 the company had succeeded, having grown to more
than 200 employees and established steady revenue and a stable
presence throughout the healthcare world. Both Sean and Adrian
were made rich—not wildly rich, but rich enough—by its success.
In the process, however, it also morphed into exactly what Sean
and Adrian had created it in order to fight: a slothlike corporate
purveyor of promises and broken software. Promises Adrian had
made and software Sean had built. The failure of Amicas to trans-
form healthcare was a failure too complex and technical for most
of America to understand, but it rested atop the success of Amicas
in terms more readily comprehensible: a growing company mak-
ing profit. Adrian and Sean had started the company not to make
money, but in order to fix a broken healthcare system; yet the sys-
tem stayed broken while they made money.

In the rolling confessional, Sean and Adrian did in fact see me,
however jokingly, as a kind of redeemer, a priest (albeit of an or-
der with no flock) whose judgment of the affairs past was essential
to their narration of their venture as a success, a failure, or as an
unsatisfying and complicated mixture of both. I thought about this
strange moment of confession, of the combination of recognition
and denial, of Adrian’s new objectification of the company as an

33geeks and recursive publics

investment opportunity, and of Sean’s continuing struggle to make
his life and his work harmonize in order to produce good in the
world. Only the promise of the next project, the next mission (and
the ostensible reason for our dinner meeting) could possibly have
mitigated the emotional disaster that their enterprise might other-
wise be. Sean’s and Adrian’s endless, arcane fervor for the promise
of new technologies did not cease, even given the quotidian calami-
ties these technologies leave in their wake. Their faith was strong,
and continuously tested.

Adrian’s and Sean’s passion was not for money—though money
was a powerful drug—it was for the Internet: for the ways in which
the Internet could replace the existing infrastructure of hospitals
and healthcare providers, deliver on old promises of telemedicine
and teleradiology, and, above all, level a playing field systemati-
cally distorted and angled by corporate and government institu-
tions that sought secrecy and private control, and stymied progress.
In healthcare, as Adrian repeatedly explained to me, this skewed
playing field was not only unfair but malicious and irresponsible.
It was costing lives. It slowed the creation and deployment of tech-
nologies and solutions that could lower costs and thus provide more
healthcare for more people. The Internet was not part of the prob-
lem; it was part of the solution to the problems that ailed 1990s
healthcare.

At the end of our car trip, at the Indian restaurant in Winchester,
I learned about their next scheme, a project called MedCommons,
which would build on the ideals of Free Software and give individu-
als a way to securely control and manage their own healthcare
data. The rhetoric of commons and the promise of the Internet as
an infrastructure dominated our conversation, but the realities of
funding and the question of whether MedCommons could be pur-
sued without starting another company remained unsettled. I tried
to imagine what form a future confession might take.

Geeks and Their Internets

Sean and Adrian are geeks. They are entrepreneurs and idealists
in different ways, a sometimes paradoxical combination. They are
certainly obsessed with technology, but especially with the Inter-
net, and they clearly distinguish themselves from others who are

34 geeks and recursive publics

obsessed with technology of just any sort. They aren’t quite rep-
resentative—they do not stand in for all geeks—but the way they
think about the Internet and its possibilities might be. Among the
rich story of their successes and failures, one might glimpse the
outlines of a question: where do their sympathies lie? Who are they
with? Who do they recognize as being like them? What might draw
them together with other geeks if not a corporation, a nation, a
language, or a cause? What binds these two geeks to any others?

Sean worked for the Federal Reserve in the 1980s, where he was
introduced to uNIx, C programming, EMACS, Usenet, Free Soft-
ware, and the Free Software Foundation. But he was not a Free
Software hacker; indeed, he resisted my attempts to call him a
hacker at all. Nevertheless, he started a series of projects and com-
panies with Adrian that drew on the repertoire of practices and
ideas familiar from Free Software, including their MedCommons
project, which was based more or less explicitly in the ideals of Free
Software. Adrian has a degree in medicine and in engineering, and
is a serial entrepreneur, with Amicas being his biggest success—
and throughout the last ten years has attended all manner of con-
ferences and meetings devoted to Free Software, Open Source, open
standards, and so on, almost always as the lone representative
from healthcare. Both graduated from the MIT (Sean in econom-
ics, Adrian in engineering), one of the more heated cauldrons of the
Internet and the storied home of hackerdom, but neither were MIT
hackers, nor even computer-science majors.

Their goals in creating a start-up rested on their understanding
of the Internet as an infrastructure: as a standardized infrastructure
with certain extremely powerful properties, not the least of which
was its flexibility. Sean and Adrian talked endlessly about open
systems, open standards, and the need for the Internet to remain
open and standardized. Adrian spoke in general terms about how it
would revolutionize healthcare; Sean spoke in specific terms about
how it structured the way Amicas’s software was being designed
and written. Both participated in standards committees and in the
online and offline discussions that are tantamount to policymaking
in the Internet world. The company they created was a “virtual”
company, that is, built on tools that depended on the Internet and
allowed employees to manage and work from a variety of loca-
tions, though not without frustration, of course: Sean waited years
for broadband access in his home, and the hospitals they served

35geeks and recursive publics

hemmed themselves in with virtual private networks, intranets, and
security firewalls that betrayed the promises of openness that Sean
and Adrian heralded.

The Internet was not the object of their work and lives, but it
did represent in detail a kind of moral or social order embodied
in a technical system and available to everyone to use as a plat-
form whereby they might compete to improve and innovate in any
realm. To be sure, although not all Internet entrepreneurs of the
1990s saw the Internet in the same way, Sean and Adrian were
hardly alone in their vision. Something about the particular way in
which they understood the Internet as representing a moral order—
simultaneously a network, a market, a public, and a technology—
was shared by a large group of people, those who I now refer to
simply as geeks.

The term geek is meant to be inclusive and to index the problem-
atic of a recursive public. Other terms may be equally useful, but
perhaps semantically overdetermined, most notably hacker, which
regardless of its definitional range, tends to connote someone sub-
versive and/or criminal and to exclude geek-sympathetic entrepre-
neurs and lawyers and activists.1 Geek is meant to signal, like the
public in “recursive public,” that geeks stand outside power, at least
in some aspects, and that they are not capitalists or technocrats,
even if they start businesses or work in government or industry.2
Geek is meant to signal a mode of thinking and working, not an
identity; it is a mode or quality that allows people to find each
other, for reasons other than the fact that they share an office, a
degree, a language, or a nation.

Until the mid-1990s, hacker, geek, and computer nerd designated
a very specific type: programmers and lurkers on relatively under-
ground networks, usually college students, computer scientists, and
“amateurs” or “hobbyists.” A classic mock self-diagnostic called the
Geek Code, by Robert Hayden, accurately and humorously detailed
the various ways in which one could be a geek in 1996—uNIx/
Linux skills, love/hate of Star Trek, particular eating and clothing
habits—but as Hayden himself points out, the geeks of the early
1990s exist no longer. The elite subcultural, relatively homogenous
group it once was has been overrun: “The Internet of 1996 was still
a wild untamed virgin paradise of geeks and eggheads unpopulated
by script kiddies, and the denizens of AOL. When things changed,
I seriously lost my way. I mean, all the ‘geek’ that was the Internet

36 geeks and recursive publics

was gone and replaced by xfiles buzzwords and politicians passing
laws about a technology they refused to comprehend.”3

For the purists like Hayden, geeks were there first, and they un-
derstood something, lived in a way, that simply cannot be compre-
hended by “script kiddies” (i.e., teenagers who perform the hacking
equivalent of spray painting or cow tipping), crackers, or AOL users,
all of whom are despised by Hayden-style geeks as unskilled users
who parade around the Internet as if they own it. While certainly
elitist, Hayden captures the distinction between those who are legiti-
mately allowed to call themselves geeks (or hackers) and those who
aren’t, a distinction that is often formulated recursively, of course:
“You are a hacker when another hacker calls you a hacker.”

However, since the explosive growth of the Internet, geek has
become more common a designation, and my use of the term thus
suggests a role that is larger than programmer/hacker, but not as
large as “all Internet users.” Despite Hayden’s frustration, geeks are
still bound together as an elite and can be easily distinguished from
“AOL users.” Some of the people I discuss would not call themselves
geeks, and some would. Not all are engineers or programmers: I
have met businessmen, lawyers, activists, bloggers, gastroenter-
ologists, anthropologists, lesbians, schizophrenics, scientists, poets,
people suffering from malaria, sea captains, drug dealers, and peo-
ple who keep lemurs, many of whom refer to themselves as geeks,
some of the time.4 There are also lawyers, politicians, sociologists,
and economists who may not refer to themselves as geeks, but who
care about the Internet just as other geeks do. By contrast “users”
of the Internet, even those who use it eighteen out of twenty-four
hours in a day to ship goods and play games, are not necessarily
geeks by this characterization.

Operating Systems and Social Systems

Berlin, November 1999. I am in a very hip club in Mitte called
WMF. It’s about eight o’clock—five hours too early for me to be a
hipster, but the context is extremely cool. WMF is in a hard-to-find,
abandoned building in the former East; it is partially converted,
filled with a mixture of new and old furnishings, video projectors,
speakers, makeshift bars, and dance-floor lighting. A crowd of
around fifty people lingers amid smoke and Beck’s beer bottles,

37geeks and recursive publics

sitting on stools and chairs and sofas and the floor. We are listen-
ing to an academic read a paper about Claude Shannon, the MIT
engineer credited with the creation of information theory. The au-
thor is smoking and reading in German while the audience politely
listens. He speaks for about seventy minutes. There are questions
and some perfunctory discussion. As the crowd breaks up, I find
myself, in halting German that quickly converts to English, having
a series of animated conversations about the GNu General Public
License, the Debian Linux Distribution, open standards in net radio,
and a variety of things for which Claude Shannon is the perfect
ghostly technopaterfamilias, even if his seventy-minute invocation
has clashed heavily with the surroundings.

Despite my lame German, I still manage to jump deeply into is-
sues that seem extremely familiar: Internet standards and open sys-
tems and licensing issues and namespaces and patent law and so
on. These are not businesspeople, this is not a start-up company. As
I would eventually learn, there was even a certain disdain for die
Krawattenfaktor, the suit-and-tie factor, at these occasional, hybrid
events hosted by Mikro e.V., a nonprofit collective of journalists,
academics, activists, artists, and others interested in new media, the
Internet, and related issues. Mikro’s constituency included people
from Germany, Holland, Austria, and points eastward. They took
some pride in describing Berlin as “the farthest East the West gets”
and arranged for a group photo in which, facing West, they stood
behind the statue of Marx and Lenin, who face East and look eter-
nally at the iconic East German radio tower (Funkturm) in Alexan-
derplatz. Mikro’s members are resolutely activist and see the issues
around the Internet-as-infrastructure not in terms of its potential
for business opportunities, but in urgently political and unrepen-
tantly aesthetic terms—terms that are nonetheless similar to those
of Sean and Adrian, from whom I learned the language that allows
me to mingle with the Mikro crowd at WMF. I am now a geek.

Before long, I am talking with Volker Grassmuck, founding mem-
ber of Mikro and organizer of the successful “Wizards of OS” confer-
ence, held earlier in the year, which had the very intriguing subtitle
“Operating Systems and Social Systems.” Grassmuck is inviting me
to participate in a planning session for the next WOS, held at the
Chaos Computer Congress, a hacker gathering that occurs each
year in December in Berlin. In the following months I will meet a
huge number of people who seem, uncharacteristically for artists

38 geeks and recursive publics

and activists, strangely obsessed with configuring their Linux dis-
tributions or hacking the http protocol or attending German Parlia-
ment hearings on copyright reform. The political lives of these folks
have indeed mixed up operating systems and social systems in ways
that are more than metaphorical.

The Idea of Order at the Keyboard

If intuition can lead one from geek to geek, from start-up to night-
club, and across countries, languages, and professional orienta-
tions, it can only be due to a shared set of ideas of how things fit
together in the world. These ideas might be “cultural” in the tra-
ditional sense of finding expression among a community of people
who share backgrounds, homes, nations, languages, idioms, eth-
nos, norms, or other designators of belonging and co-presence. But
because the Internet—like colonialism, satellite broadcasting, and
air travel, among other things—crosses all these lines with aban-
don that the shared idea of order is better understood as part of a
public, or public sphere, a vast republic of letters and media and
ideas circulating in and through our thoughts and papers and let-
ters and conversations, at a planetary scope and scale.

“Public sphere” is an odd kind of thing, however. It is at once a
concept—intended to make sense of a space that is not the here and
now, but one made up of writings, ideas, and discussions—and a
set of ideas that people have about themselves and their own par-
ticipation in such a space. I must be able to imagine myself speak-
ing and being spoken to in such a space and to imagine a great
number of other people also doing so according to unwritten rules
we share. I don’t need a complete theory, and I don’t need to call
it a public sphere, but I must somehow share an idea of order with
all those other people who also imagine themselves participating in
and subjecting themselves to that order. In fact, if the public sphere
exists as more than just a theory, then it has no other basis than just
such a shared imagination of order, an imagination which provides
a guide against which to make judgments and a map for chang-
ing or achieving that order. Without such a shared imagination, a
public sphere is otherwise nothing more than a cacophony of voices
and information, nothing more than a stream of data, structured
and formatted by and for machines, whether paper or electronic.

39geeks and recursive publics

Charles Taylor, building on the work of Jürgen Habermas and
Michael Warner, suggests that the public sphere (both idea and
thing) that emerged in the eighteenth century was created through
practices of communication and association that reflected a moral
order in which the public stands outside power and guides or checks
its operation through shared discourse and enlightened discussion.
Contrary to the experience of bodies coming together into a com-
mon space (Taylor calls them “topical spaces,” such as conversa-
tion, ritual, assembly), the crucial component is that the public
sphere “transcends such topical spaces. We might say that it knits a
plurality of spaces into one larger space of non-assembly. The same
public discussion is deemed to pass through our debate today, and
someone else’s earnest conversation tomorrow, and the newspaper
interview Thursday and so on. . . . The public sphere that emerges
in the eighteenth century is a meta-topical common space.”5

Because of this, Taylor refers to his version of a public as a “so-
cial imaginary,” a way of capturing a phenomena that wavers be-
tween having concrete existence “out there” and imagined rational
existence “in here.” There are a handful of other such imagined
spaces—the economy, the self-governing people, civil society—and
in Taylor’s philosophical history they are related to each through
the “ideas of moral and social order” that have developed in the
West and around the world.6

Taylor’s social imaginary is intended to do something specific: to
resist the “spectre of idealism,” the distinction between ideas and
practices, between “ideologies” and the so-called material world as
“rival causal agents.” Taylor suggests, “Because human practices
are the kind of thing that makes sense, certain ideas are internal to
them; one cannot distinguish the two in order to ask the question
Which causes which?”7 Even if materialist explanations of cause
are satisfying, as they often are, Taylor suggests that they are so
“at the cost of being implausible as a universal principle,” and he
offers instead an analysis of the rise of the modern imaginaries of
moral order.8

The concept of recursive public, like that of Taylor’s public sphere,
is understood here as a kind of social imaginary. The primary rea-
son is to bypass the dichotomy between ideas and material practice.
Because the creation of software, networks, and legal documents
are precisely the kinds of activities that trouble this distinction—
they are at once ideas and things that have material effects in the

40 geeks and recursive publics

world, both expressive and performative—it is extremely difficult
to identify the properly material materiality (source code? com-
puter chips? semiconductor manufacturing plants?). This is the first
of the reasons why a recursive public is to be distinguished from the
classic formulae of the public sphere, that is, that it requires a kind
of imagination that includes the writing and publishing and speak-
ing and arguing we are familiar with, as well as the making of
new kinds of software infrastructures for the circulation, archiving,
movement, and modifiability of our enunciations.

The concept of a social imaginary also avoids the conundrums
created by the concept of “ideology” and its distinction from mate-
rial practice. Ideology in its technical usage has been slowly and
surely overwhelmed by its pejorative meaning: “The ideological is
never one’s own position; it is always the stance of someone else,
always their ideology.”9 If one were to attempt an explanation of
any particular ideology in nonpejorative terms, there is seemingly
nothing that might rescue the explanation from itself becoming
ideological.

The problem is an old one. Clifford Geertz noted it in “Ideology
as a Cultural System,” as did Karl Mannheim before him in Ideology
and Utopia: it is the difficulty of employing a non-evaluative con-
cept of ideology.10 Of all the versions of struggle over the concept
of a scientific or objective sociology, it is the claim of exploring ide-
ology objectively that most rankles. As Geertz put it, “Men do not
care to have beliefs to which they attach great moral significance
examined dispassionately, no matter for how pure a purpose; and
if they are themselves highly ideologized, they may find it simply
impossible to believe that a disinterested approach to critical mat-
ters of social and political conviction can be other than a scholastic
sham.”11

Mannheim offered one response: a version of epistemological
relativism in which the analysis of ideology included the ideologi-
cal position of the analyst. Geertz offered another: a science of
“symbolic action” based in Kenneth Burke’s work and drawing on
a host of philosophers and literary critics.12 Neither the concept
of ideology, nor the methods of cultural anthropology have been
the same since. “Ideology” has become one of the most widely
deployed (some might say, most diffuse) tools of critique, where
critique is understood as the analysis of cultural patterns given
in language and symbolic structures, for the purposes of bringing

41geeks and recursive publics

to light systems of hegemony, domination, authority, resistance,
and/or misrecognition.13 However, the practices of critique are just
as (if not more) likely to be turned on critical scholars themselves,
to show how the processes of analysis, hidden assumptions, latent
functions of the university, or other unrecognized features the ma-
terial, non-ideological real world cause the analyst to fall into an
ideological trap.

The concept of ideology takes a turn toward “social imaginary”
in Paul Ricoeur’s Lectures on Ideology and Utopia, where he proposes
ideological and utopian thought as two components of “social and
cultural imagination.” Ricoeur’s overview divides approaches to
the concept of ideology into three basic types—the distorting, the
integrating, and the legitimating—according to how actors deal
with reality through (symbolic) imagination. Does the imagina-
tion distort reality, integrate it, or legitimate it vis-à-vis the state?
Ricoeur defends the second, Geertzian flavor: ideologies integrate
the symbolic structure of the world into a meaningful whole, and
“only because the structure of social life is already symbolic can it
be distorted.”14

For Ricoeur, the very substance of life begins in the interpreta-
tion of reality, and therefore ideologies (as well as utopias—and
perhaps conspiracies) could well be treated as systems that inte-
grate those interpretations into the meaningful wholes of political
life. Ricoeur’s analysis of the integration of reality though social
imagination, however, does not explicitly address how imagina-
tion functions: what exactly is the nature of this symbolic action or
interpretation, or imagination? Can one know it from the outside,
and does it resist the distinction between ideology and material
practice? Both Ricoeur and Geertz harbor hope that ideology can
be made scientific, that the integration of reality through symbolic
action requires only the development of concepts adequate to the
job.

Re-enter Charles Taylor. In Modern Social Imaginaries the con-
cept of social imaginary is distinctive in that it attempts to capture
the specific integrative imaginations of modern moral and social
order. Taylor stresses that they are imaginations—not necessarily
theories—of modern moral and social order: “By social imaginary,
I mean something much broader and deeper than the intellectual
schemes people may entertain when they think about social real-
ity in a disengaged mode. I am thinking, rather, of the ways in

42 geeks and recursive publics

which people imagine their social existence, how they fit together
with others, how things go on between them and their fellows, the
expectations that are normally met, and the deeper normative no-
tions and images that underlie these expectations.”15 Social imagi-
naries develop historically and result in both new institutions and
new subjectivities; the concepts of public, market, and civil society
(among others) are located in the imaginative faculties of actors
who recognize the shared, common existence of these ideas, even if
they differ on the details, and the practices of those actors reflect a
commitment to working out these shared concepts.

Social imaginaries are an extension of “background” in the philo-
sophical sense: “a wider grasp of our whole predicament.”16 The
example Taylor uses is that of marching in a demonstration: the ac-
tion is in our imaginative repertory and has a meaning that cannot
be reduced to the local context: “We know how to assemble, pick
up banners and march. . . . [W]e understand the ritual. . . . [T]he
immediate sense of what we are doing, getting the message to our
government and our fellow citizens that the cuts must stop, say,
makes sense in a wider context, in which we see ourselves standing
in a continuing relation with others, in which it is appropriate to
address them in this manner.”17 But we also stand “internationally”
and “in history” against a background of stories, images, legends,
symbols, and theories. “The background that makes sense of any
given act is wide and deep. It doesn’t include everything in our
world, but the relevant sense-giving features can’t be circumscribed.
. . . [It] draws on our whole world, that is, our sense of our whole
predicament in time and space, among others and in history.”18

The social imaginary is not simply the norms that structure our
actions; it is also a sense of what makes norms achievable or “real-
izable,” as Taylor says. This is the idea of a “moral order,” one that
we expect to exist, and if it doesn’t, one that provides a plan for
achieving it. For Taylor, there is such a thing as a “modern idea of
order,” which includes, among other things, ideas of what it means
to be an individual, ideas of how individual passions and desires
are related to collective association, and, most important, ideas
about living in time together (he stresses a radically secular con-
ception of time—secular in a sense that means more than simply
“outside religion”). He by no means insists that this is the only such
definition of modernity (the door is wide open to understanding
alternative modernities), but that the modern idea of moral order is

43geeks and recursive publics

one that dominates and structures a very wide array of institutions
and individuals around the world.

The “modern idea of moral order” is a good place to return to the
question of geeks and their recursive publics. Are the ideas of order
shared by geeks different from those Taylor outlines? Do geeks like
Sean and Adrian, or activists in Berlin, possess a distinctive social
imaginary? Or do they (despite their planetary dispersal) participate
in this common modern idea of moral order? Do the stories and nar-
ratives, the tools and technologies, the theories and imaginations
they follow and build on have something distinctive about them?
Sean’s and Adrian’s commitment to transforming healthcare seems
to be, for instance, motivated by a notion of moral order in which
the means of allocation of healthcare might become more just, but
it is also shot through with technical ideas about the role of stan-
dards, the Internet, and the problems with current technical solu-
tions; so while they may seem to be simply advocating for better
healthcare, they do so through a technical language and practice
that are probably quite alien to policymakers, upper management,
and healthcare advocacy groups that might otherwise be in com-
plete sympathy.

The affinity of geeks for each other is processed through and by
ideas of order that are both moral and technical—ideas of order that
do indeed mix up “operating systems and social systems.” These
systems include the technical means (the infrastructure) through
which geeks meet, assemble, collaborate, and plan, as well as how
they talk and think about those activities. The infrastructure—the
Internet—allows for a remarkably wide and diverse array of people
to encounter and engage with each other. That is to say, the idea
of order shared by geeks is shared because they are geeks, because
they “get it,” because the Internet’s structure and software have
taken a particular form through which geeks come to understand
the moral order that gives the fabric of their political lives warp
and weft.

Internet Silk Road

Bangalore, March 2000. I am at another bar, this time on one of
Bangalore’s trendiest streets. The bar is called Purple Haze, and I
have been taken there, the day after my arrival, by Udhay Shankar

44 geeks and recursive publics

N. Inside it is dark and smoky, purple, filled with men between
eighteen and thirty, and decorated with posters of Jimi Hendrix,
Black Sabbath, Jim Morrison (Udhay: “I hate that band”), Led Zep-
pelin, and a somewhat out of place Frank Zappa (Udhay: “One of
my political and musical heroes”). All of the men, it appears, are
singing along with the music, which is almost without exception
heavy metal.

I engage in some stilted conversation with Udhay and his cousin
Kirti about the difference between Karnatic music and rock-and-
roll, which seems to boil down to the following: Karnatic music
decreases metabolism and heart rate, leading to a relaxed state of
mind; rock music does the opposite. Given my aim of focusing on
the Internet and questions of openness, I have already decided not
to pay attention to this talk of music. In retrospect, I understand
this to have been a grave methodological error: I underestimated
the extent to which the subject of music has been one of the pri-
mary routes into precisely the questions about the “reorientation of
knowledge and power” I was interested in. Over the course of the
evening and the following days, Udhay introduced me, as prom-
ised, to a range of people he either knew or worked with in some
capacity. Almost all of the people I met appeared to sincerely love
heavy-metal music.

I met udhay Shankar N. in 1999 through a newsletter, distributed
via e-mail, called Tasty Bits from the Technology Front. It was one of
a handful of sources I watched closely while in Berlin, looking for
such connections to geek culture. The newsletter described a start-up
company in Bangalore, one that was devoted to creating a gateway
between the Internet and mobile phones, and which was, according
to the newsletter, an entirely Indian operation, though presumably
with u.S. venture funds. I wanted to find a company to compare to
Amicas: a start-up, run by geeks, with a similar approach to the In-
ternet, but halfway around the world and in a “culture” that might
be presumed to occupy a very different kind of moral order. udhay
invited me to visit and promised to introduce me to everyone he
knew. He described himself as a “random networker”; he was not
really a programmer or a designer or a Free Software geek, despite
his extensive knowledge of software, devices, operating systems,
and so on, including Free and Open Source Software. Neither was
he a businessman, but rather described himself as the guy who
“translates between the suits and the techs.”

45geeks and recursive publics

Udhay “collects interesting people,” and it was primarily through
his zest for collecting that I met all the people I did. I met cosmopoli-
tan activists and elite lawyers and venture capitalists and engineers
and cousins and brothers and sisters of engineers. I met advertising
executives and airline flight attendants and consultants in Bombay.
I met journalists and gastroenterologists, computer-science profes-
sors and musicians, and one mother of a robot scientist in Banga-
lore. Among them were Muslims, Hindus, Jains, Jews, Parsis, and
Christians, but most of them considered themselves more secular
and scientific than religious. Many were self-educated, or like their
U.S. counterparts, had dropped out of university at some point, but
continued to teach themselves about computers and networks. Some
were graduates or employees of the Indian Institute of Science in
Bangalore, an institution that was among the most important for In-
dian geeks (as Stanford University is to Silicon Valley, many would
say). Among the geeks to whom Udhay introduced me, there were
only two commonalities: the geeks were, for the most part, male,
and they all loved heavy-metal music.19

While I was in Bangalore, I was invited to join a mailing list
run by Udhay called Silk-list, an irregular, unmoderated list de-
voted to “intelligent conversation.” The list has no particular fo-
cus: long, meandering conversations about Indian politics, religion,
economics, and history erupt regularly; topics range from food to
science fiction to movie reviews to discussions on Kashmir, Harry
Potter, the singularity, or nanotechnology. Udhay started Silk-list
in 1997 with Bharath Chari and Ram Sundaram, and the recipients
have included hundreds of people around the world, some very
well-known ones, programmers, lawyers, a Bombay advertising
executive, science-fiction authors, entrepreneurs, one member of
the start-up Amicas, at least two transhumanists, one (diagnosed)
schizophrenic, and myself. Active participants usually numbered
about ten to fifteen, while many more lurked in the background.

Silk-list is an excellent index of the relationship between the net-
work of people in Bangalore and their connection to a worldwide
community on the Internet—a fascinating story of the power of
heterogeneously connected networks and media. Udhay explained
that in the early 1990s he first participated in and then taught
himself to configure and run a modem-based networking system
known as a Bulletin Board Service (BBS) in Bangalore. In 1994
he heard about a book by Howard Rheingold called The Virtual

46 geeks and recursive publics

Community, which was his first introduction to the Internet. A cou-
ple of years later when he finally had access to the Internet, he im-
mediately e-mailed John Perry Barlow, whose work he knew from
Wired magazine, to ask for Rheingold’s e-mail address in order to
connect with him. Rheingold and Barlow exist, in some ways, at
the center of a certain kind of geek world: Rheingold’s books are
widely read popular accounts of the social and community aspects
of new technologies that have often had considerable impact inter-
nationally; Barlow helped found the Electronic Frontier Foundation
and is responsible for popularizing the phrase “information wants
to be free.”20 Both men had a profound influence on udhay and ul-
timately provided him with the ideas central to running an online
community. A series of other connections of similar sorts—some
personal, some precipitated out of other media and other chan-
nels, some entirely random—are what make up the membership
of Silk-list.21

Like many similar communities of “digerati” during and after
the dot.com boom, Silk-list constituted itself more or less organi-
cally around people who “got it,” that is, people who claimed to
understand the Internet, its transformative potential, and who had
the technical skills to participate in its expansion. Silk-list was not
the only list of its kind. Others such as the Tasty Bits newsletter,
the FoRK (Friends of Rohit Khare) mailing list (both based in Bos-
ton), and the Nettime and Syndicate mailing lists (both based in
the Netherlands) ostensibly had different reasons for existence, but
many had the same subscribers and overlapping communities of
geeks. Subscription was open to anyone, and occasionally someone
would stumble on the list and join in, but most were either invited
by members or friends of friends, or they were connected by virtue
of cross-posting from any number of other mailing lists to which
members were subscribed.

/pub

Silk-list is public in many senses of the word. Practically speak-
ing, one need not be invited to join, and the material that passes
through the list is publicly archived and can be found easily on the
Internet. Udhay does his best to encourage everyone to speak and
to participate, and to discourage forms of discourse that he thinks

47geeks and recursive publics

might silence participants into lurking. Silk-list is not a government,
corporate, or nongovernmental list, but is constituted only through
the activity of geeks finding each other and speaking to each other
on this list (which can happen in all manner of ways: through work,
through school, through conferences, through fame, through ran-
dom association, etc.). Recall Charles Taylor’s distinction between
a topical and a metatopical space. Silk-list is not a conventionally
topical space: at no point do all of its members meet face-to-face
(though there are regular meet-ups in cities around the world), and
they are not all online at the same time (though the volume and
tempo of messages often reflect who is online “speaking” to each
other at any given moment). It is a topical space, however, if one
considers it from the perspective of the machine: the list of names
on the mailing list are all assembled together in a database, or in
a file, on the server that manages the mailing list. It is a stretch
to call this an “assembly,” however, because it assembles only the
avatars of the mailing-list readers, many of whom probably ignore
or delete most of the messages.

Silk-list is certainly, on the other hand, a “metatopical” public.
It “knits together” a variety of topical spaces: my discussion with
friends in Houston, and other members’ discussions with people
around the world, as well as the sources of multiple discussions like
newspaper and magazine articles, films, events, and so on that are
reported and discussed online. But Silk-list is not “The” public—it is
far from being the only forum in which the public sphere is knitted
together. Many, many such lists exist.

In Publics and Counterpublics Michael Warner offers a further dis-
tinction. “The” public is a social imaginary, one operative in the
terms laid out by Taylor: as a kind of vision of order evidenced
through stories, images, narratives, and so on that constitute the
imagination of what it means to be part of the public, as well as
plans necessary for creating the public, if necessary. Warner dis-
tinguishes, however, between a concrete, embodied audience, like
that at a play, a demonstration, or a riot (a topical public in Tay-
lor’s terms), and an audience brought into being by discourse and
its circulation, an audience that is not metatopical so much as it
is a public that is concrete in a different way; it is concrete not in
the face-to-face temporality of the speech act, but in the sense of
calling a public into being through an address that has a differ-
ent temporality. It is a public that is concrete in a media-specific

48 geeks and recursive publics

manner: it depends on the structures of creation, circulation, use,
performance, and reuse of particular kinds of discourse, particular
objects or instances of discourse.

Warner’s distinction has a number of implications. The first, as
Warner is careful to note, is that the existence of particular media
is not sufficient for a public to come into existence. Just because a
book is printed does not mean that a public exists; it requires also
that the public take corresponding action, that is, that they read
it. To be part of a particular public is to choose to pay attention
to those who choose to address those who choose to pay attention
. . . and so on. Or as Warner puts it, “The circularity is essential
to the phenomenon. A public might be real and efficacious, but its
reality lies in just this reflexivity by which an addressable object is
conjured into being in order to enable the very discourse that gives
it existence.”22

This “autotelic” feature of a public is crucial if one is to under-
stand the function of a public as standing outside of power. It simply
cannot be organized by the state, by a corporation, or by any other
social totality if it is to have the legitimacy of an independently
functioning public. As Warner puts it, “A public organizes itself
independently of state institutions, law, formal frameworks of citi-
zenship, or preexisting institutions such as the church. If it were not
possible to think of the public as organized independently of the
state or other frameworks, the public could not be sovereign with
respect to the state. . . . Speaking, writing, and thinking involve
us—actively and immediately—in a public, and thus in the being
of the sovereign.”23

Warner’s description makes no claim that any public or even The
Public actually takes this form in the present: it is a description
of a social imaginary or a “faith” that allows individuals to make
sense of their actions according to a modern idea of social order. As
Warner (and Habermas before him) suggests, the existence of such
autonomous publics—and certainly the idea of “public opinion”—
does not always conform to this idea of order. Often such publics
turn out to have been controlled all along by states, corporations,
capitalism, and other forms of social totality that determine the
nature of discourse in insidious ways. A public whose participants
have no faith that it is autotelic and autonomous is little more than
a charade meant to assuage opposition to authority, to transform

49geeks and recursive publics

political power and equality into the negotiation between unequal
parties.

Is Silk-list a public? More important, is it a sovereign one? War-
ner’s distinction between different media-specific forms of assembly
is crucial to answering this question. If one wants to know whether
a mailing list on the Internet is more or less likely to be a sovereign
public than a book-reading public or the nightly-news-hearing one,
then one needs to approach it from the specificity of the form of
discourse. This specificity not only includes whether the form is
text or video and audio, or whether the text is ASCII or Unicode, or
the video PAL or NTSC, but it also includes the means of creation,
circulation, and reuse of that discourse as well.

For example, consider the differences between a book published
in a conventional fashion, by a conventional, corporate press, dis-
tributed to bookstores or via Amazon.com, and a book published
by an Internet start-up which makes an electronic copy freely
available with a copyleft license, yet charges (a lower price) for
a print-on-demand hardcopy. Both books might easily enter the
metatopical space of The Public: discussed in homes, schools, on
mailing lists, glowingly reviewed or pilloried, perhaps having ef-
fects on corporate behavior, state, or public policy. The former,
however, is highly constrained in terms of who will author such
a book, how it will be distributed, marketed, edited, and revised,
and so on. Copyright law will restrict what readers can do with it,
including how they might read it or subsequently circulate it or
make derivative use of it. However, a traditionally published book
is also enriched by its association with a reputable corporation: it
is treated more or less immediately as authoritative, perhaps as
meeting some standard of accuracy, precision, or even truth, and
its quality is measured primarily by sales.

The on-demand, Internet-mediated book, by contrast, will have a
much different temporality of circulation: it might languish in ob-
scurity due to lack of marketing or reputable authority, or it might
get mentioned somewhere like the New York Times and suddenly
become a sensation. For such a book, copyright law (in the form
of a copyleft license) might allow a much wider range of uses and
reuses, but it will restrict certain forms of commercialization of the
text. The two publics might therefore end up looking quite differ-
ent, overlapping, to be sure, but varying in terms of their control

50 geeks and recursive publics

and the terms of admittance. What is at stake is the power of one
or the other such public to appear as an independent and sovereign
entity—free from suspect constraints and control—whose function
is to argue with other constituted forms of power.

The conventionally published book may well satisfy all the cri-
teria of being a public, at least in the colloquial sense of making
a set of ideas and a discourse widely available and expecting to
influence, or receive a response from, constituted forms of sover-
eign power. However, it is only the latter “on-demand” scheme for
publishing that satisfies the criteria of being a recursive public. The
differences in this example offer a crude indication of why the In-
ternet is so crucially important to geeks, so important that it draws
them together, in its defense, as an infrastructure that enables the
creation of publics that are thought to be autonomous, indepen-
dent, and autotelic. Geeks share an idea of moral and technical
order when it comes to the Internet; not only this, but they share
a commitment to maintaining that order because it is what al-
lows them to associate as a recursive public in the first place. They
discover, or rediscover, through their association, the power and
possibility of occupying the position of independent public—one
not controlled by states, corporations, or other organizations, but
open (they claim) through and through—and develop a desire to
defend it from encroachment, destruction, or refeudalization (to
use Habermas’s term for the fragmentation of the public sphere).

The recursive public is thus not only the book and the discourse
around the book. It is not even “content” expanded to include all
kinds of media. It is also the technical structure of the Internet
as well: its software, its protocols and standards, its applications
and software, its legal status and the licenses and regulations that
govern it. This captures both of the reasons why recursive publics
are distinctive: (1) they include not only the discourses of a public,
but the ability to make, maintain, and manipulate the infrastruc-
tures of those discourses as well; and (2) they are “layered” and
include both discourses and infrastructures, to a specific technical
extent (i.e., not all the way down). The meaning of which layers
are important develops more or less immediately from direct en-
gagement with the medium. In the following example, for instance,
Napster represents the potential of the Internet in miniature—as an
application—but it also connects immediately to concerns about
the core protocols that govern the Internet and the process of stan-

51geeks and recursive publics

dardization that governs the development of these protocols: hence
recursion through the layers of an infrastructure.

These two aspects of the recursive public also relate to a concern
about the fragmentation or refeudalization of the public sphere:
there is only one Internet. Its singularity is not technically determined
or by any means necessary, but it is what makes the Internet so
valuable to geeks. It is a contest, the goal of which is to main-
tain the Internet as an infrastructure for autonomous and autotelic
publics to emerge as part of The Public, understood as part of an
imaginary of moral and technical order: operating systems and
social systems.

From Napster to the Internet

On 27 July 2000 Eugen Leitl cross-posted to Silk-list a message with
the subject line “Prelude to the Singularity.” The message’s original
author, Jeff Bone (not at the time a member of Silk-list), had posted
the “op-ed piece” initially to the FoRK mailing list as a response
to the Recording Industry Association of America’s (RIAA) actions
against Napster. The RIAA had just succeeded in getting U.S. dis-
trict judge Marilyn Hall Patel, Ninth Circuit Court of Appeals, to
issue an injunction to Napster to stop downloads of copyrighted
music. Bone’s op-ed said,

Popular folklore has it that the Internet was designed with decentral-
ized routing protocols in order to withstand a nuclear attack. That
is, the Internet “senses damage” and “routes around it.” It has been
said that, on the ’Net, censorship is perceived as damage and is sub-
sequently routed around. The RIAA, in a sense, has cast itself in a
censor’s role. Consequently, the music industry will be perceived as
damage—and it will be routed around. There is no doubt that this will
happen, and that technology will evolve more quickly than businesses
and social institutions can; there are numerous highly-visible projects
already underway that attempt to create technology that is invulner-
able to legal challenges of various kinds. Julian Morrison, the origina-
tor of a project (called Fling) to build a fully anonymous/untraceable
suite of network protocols, expresses this particularly eloquently.24

Bone’s message is replete with details that illustrate the meaning
and value of the Internet to geeks, and that help clarify the concept

52 geeks and recursive publics

of a recursive public. While it is only one message, it nonetheless
condenses and expresses a variety of stories, images, folklore, and
technical details that I elaborate herein.

The Napster shutdown in 2000 soured music fans and geeks alike,
and it didn’t really help the record labels who perpetrated it either.
For many geeks, Napster represented the Internet in miniature,
an innovation that both demonstrated something on a scope and
scale never seen before, and that also connected people around
something they cared deeply about—their shared interest in music.
Napster raised interesting questions about its own success: Was it
successful because it allowed people to develop new musical interests
on a scope and scale they had never experienced before? Or was
it successful because it gave people with already existing musical
interests a way to share music on a scope and scale they had never
experienced before? That is to say, was it an innovation in mar-
keting or in distribution? The music industry experienced it as the
latter and hence as direct competition with their own means of dis-
tribution. Many music fans experienced it as the former, what Cory
Doctorow nicely labeled “risk-free grazing,” meaning the ability to
try out an almost unimaginable diversity of music before choosing
what to invest one’s interests (and money) in. To a large extent,
Napster was therefore a recapitulation of what the Internet already
meant to geeks.

Bone’s message, the event of the Napster shutdown, and the vari-
ous responses to it nicely illustrate the two key aspects of the re-
cursive public: first, the way in which geeks argue not only about
rights and ideas (e.g., is it legal to share music?) but also about
the infrastructures that allow such arguing and sharing; second,
the “layers” of a recursive public are evidenced in the immediate
connection of Napster (an application familiar to millions) to the
“decentralized routing protocols” (TCP/IP, DNS, and others) that
made it possible for Napster to work the way it did.

Bone’s message contains four interrelated points. The first con-
cerns the concept of autonomous technical progress. The title “Pre-
lude to the Singularity” refers to a 1993 article by Vernor Vinge
about the notion of a “singularity,” a point in time when the speed
of autonomous technological development outstrips the human ca-
pacity to control it.25 The notion of singularity has the status of a
kind of colloquial “law” similar to Moore’s Law or Metcalfe’s Law,
as well as signaling links to a more general literature with roots in

53geeks and recursive publics

libertarian or classically liberal ideas of social order ranging from
John Locke and John Stuart Mill to Ayn Rand and David Brin.26

Bone’s affinity for transhumanist stories of evolutionary theory,
economic theory, and rapid innovation sets the stage for the rest
of his message. The crucial rhetorical gambit here is the appeal
to inevitability (as in the emphatic “there is no doubt that this will
happen”): Bone establishes that he is speaking to an audience that
is accustomed to hearing about the inevitability of technical prog-
ress and the impossibility of legal maneuvering to change it, but
his audience may not necessarily agree with these assumptions.
Geeks occupy a spectrum from “polymath” to “transhumanist,” a
spectrum that includes their understandings of technological prog-
ress and its relation to human intervention. Bone’s message clearly
lands on the far transhumanist side.

A second point concerns censorship and the locus of power: ac-
cording to Bone, power does not primarily reside with the govern-
ment or the church, but comes instead from the private sector, in
this case the coalition of corporations represented by the RIAA.
The significance of this has to do with the fact that a “public” is
expected to be its own sovereign entity, distinct from church, state,
or corporation, and while censorship by the church or the state is a
familiar form of aggression against publics, censorship by corpora-
tions (or consortia representing them), as it strikes Bone and others,
is a novel development. Whether the blocking of file-sharing can
legitimately be called censorship is also controversial, and many
Silk-list respondents found the accusation of censorship untenable.

Proving Bone’s contention, over the course of the subsequent
years and court cases, the RIAA and the Motion Picture Associa-
tion of America (MPAA) have been given considerably more police
authority than even many federal agencies—especially with regard
to policing networks themselves (an issue which, given its technical
abstruseness, has rarely been mentioned in the mainstream mass
media). Both organizations have not only sought to prosecute file-
sharers but have been granted rights to obtain information from
Internet Service Providers about customer activities and have con-
sistently sought the right to secretly disable (hack into, disable,
or destroy) private computers suspected of illegal activity. Even if
these practices may not be defined as censorship per se, they are
nonetheless fine examples of the issues that most exercise geeks: the
use of legal means by a few (in this case, private corporations) to

54 geeks and recursive publics

suppress or transform technologies in wide use by the many. They
also index the problems of monopoly, antitrust, and technical con-
trol that are not obvious and often find expression, for example, in
allegories of reformation and the control of the music-sharing laity
by papal authorities.

Third, Bone’s message can itself be understood in terms of the
reorientation of knowledge and power. Although what it means
to call his message an “op-ed” piece may seem obvious, Bone’s
message was not published anywhere in any conventional sense. It
doesn’t appear to have been widely cited or linked to. However, for
one day at least, it was a heated discussion topic on three mailing
lists, including Silk-list. “Publication” in this instance is a different
kind of event than getting an op-ed in the New York Times.

The material on Silk-list rests somewhere between private con-
versation (in a public place, perhaps) and published opinion. No
editor made a decision to “publish” the message—Bone just clicked
“send.” However, as with any print publication, his piece was theo-
retically accessible by anyone, and what’s more, a potentially huge
number of copies may be archived in many different places (the
computers of all the participants, the server that hosts the list, the
Yahoo! Groups servers that archive it, Google’s search databases,
etc.). Bone’s message exemplifies the recursive nature of the recur-
sive public: it is a public statement about the openness of the In-
ternet, and it is an example of the new forms of publicness it makes
possible through its openness.

The constraints on who speaks in a public sphere (such as the
power of printers and publishers, the requirements of licensing, or
issues of cost and accessibility) are much looser in the Internet era
than in any previous one. The Internet gives a previously unknown
Jeff Bone the power to dash off a manifesto without so much as a
second thought. On the other hand, the ease of distribution belies
the difficulty of actually being heard: the multitudes of other Jeff
Bones make it much harder to get an audience. In terms of publics,
Bone’s message can constitute a public in the same sense that a New
York Times op-ed can, but its impact and meaning will be different.
His message is openly and freely available for as long as there are
geeks and laws and machines that maintain it, but the New York
Times piece will have more authority, will be less accessible, and,
most important, will not be available to just anyone. Geeks imagine
a space where anyone can speak with similar reach and staying

55geeks and recursive publics

power—even if that does not automatically imply authority—and
they imagine that it should remain open at all costs. Bone is there-
fore interested precisely in a technical infrastructure that ensures
his right to speak about that infrastructure and offer critique and
guidance concerning it.

The ability to create and to maintain such a recursive public,
however, raises the fourth and most substantial point that Bone’s
message makes clear. The leap to speaking about the “decentralized
routing protocols” represents clearly the shared moral and technical
order of geeks, derived in this case from the specific details of the
Internet. Bone’s post begins with a series of statements that are part
of the common repertoire of technical stories and images among
geeks. Bone begins by making reference to the “folklore” of the In-
ternet, in which routing protocols are commonly believed to have
been created to withstand a nuclear attack. In calling it folklore he
suggests that this is not a precise description of the Internet, but an
image that captures its design goals. Bone collapses it into a more
recent bit of folklore: “The Internet treats censorship as damage
and routes around it.”27 Both bits of folklore are widely circulated
and cited; they encapsulate one of the core intellectual ideas about
the architecture of the Internet, that is, its open and distributed in-
terconnectivity. There is certainly a specific technical backdrop for
this suggestion: the TCP/IP “internetting” protocols were designed
to link up multiple networks without making them sacrifice their
autonomy and control. However, Bone uses this technical argument
more in the manner of a social imaginary than of a theory, that is,
as a way of thinking about the technical (and moral) order of the
Internet, of what the Internet is supposed to be like.

In the early 1990s this version of the technical order of the In-
ternet was part of a vibrant libertarian dogma asserting that the
Internet simply could not be governed by any land-based sovereign
and that it was fundamentally a place of liberty and freedom. This
was the central message of people such as John Perry Barlow, John
Gilmore, Howard Rheingold, Esther Dyson, and a host of others
who populated both the pre-1993 Internet (that is, before the World
Wide Web became widely available) and the pages of magazines
such as Wired and Mondo 2000—the same group of people, inciden-
tally, whose ideas were visible and meaningful to Udhay Shankar
and his friends in India even prior to Internet access there, not to
mention to Sean and Adrian in Boston, and artists and activists in

56 geeks and recursive publics

Europe, all of whom often reacted more strongly against this liber-
tarian aesthetic.

For Jeff Bone (and a great many geeks), the folkloric notion that
“the net treats censorship as damage” is a very powerful one: it
suggests that censorship is impossible because there is no central
point of control. A related and oft-cited sentiment is that “trying to
take something off of the Internet is like trying to take pee out of
a pool.” This is perceived by geeks as a virtue, not a drawback, of
the Internet.

The argument is quite complex, however: on one side of a spec-
trum, there is the belief that the structure of the Internet ensures
that censorship cannot happen, technically speaking, so long as the
Internet’s protocols and software remain open. Furthermore, that
structure ensures that all attempts to regulate the Internet will also
fail (e.g., the related sentiment that “the Internet treats Congress as
damage and routes around it”).

On the other side of the spectrum, however, this view of the un-
regulatable nature of the Internet has been roundly criticized, most
prominently by Lawrence Lessig, who is otherwise often in sympa-
thy with geek culture. Lessig suggests that just because the Internet
has a particular structure does not mean that it must always be
that way.28 His argument has two prongs: first, that the Internet is
structured the way it is because it is made of code that people write,
and thus it could have been and will be otherwise, given that there
are changes and innovations occurring all the time; second, that
the particular structure of the Internet therefore governs or regu-
lates behavior in particular ways: Code is Law. So while it may be
true that no one can make the Internet “closed” by passing a law,
it is also true that the Internet could become closed if the technol-
ogy were to be altered for that purpose, a process that may well be
nudged and guided by laws, regulations, and norms.

Lessig’s critique is actually at the heart of Bone’s concern, and
the concern of recursive publics generally: the Internet is a contest
and one that needs to be repeatedly and constantly replayed in
order to maintain it as the legitimate infrastructure through which
geeks associate with one another. Geeks argue in detail about what
distinguishes technical factors from legal or social ones. Openness
on the Internet is complexly intertwined with issues of availability,
price, legal restriction, usability, elegance of design, censorship,
trade secrecy, and so on.

57geeks and recursive publics

However, even where openness is presented as a natural tendency
for technology (in oft-made analogies with reproductive fitness and
biodiversity, for example), it is only a partial claim in that it rep-
resents only one of the “layers” of a recursive public. For instance,
when Bone suggests that the net is “invulnerable to legal attack”
because “technology will evolve more quickly than businesses and
social institutions can,” he is not only referring to the fact that the
Internet’s novel technical configuration has few central points of
control, which makes it difficult for a single institution to control it,
but also talking about the distributed, loosely connected networks
of people who have the right to write and rewrite software and deal
regularly with the underlying protocols of the Internet—in other
words, of geeks themselves.

Operating systems and social systems: the imagination of order
shared by geeks is both moral and technical. It is not only about the
technical structure of the Internet, however innovative that is, but
also about the legal and social structure that has emerged with it,
the kind of order that has made it possible for geeks to associate in
a planetary public and to become aware of the value of the space
they have made.

Many geeks, perhaps including Bone, discover the nature of this
order by coming to understand how the Internet works—how it
works technically, but also who created it and how. Some have
come to this understanding through participation in Free Software
(an exemplary “recursive public”), others through stories and tech-
nologies and projects and histories that illuminate the process of
creating, growing, and evolving the Internet. The story of the pro-
cess by which the Internet is standardized is perhaps the most well
known: it is the story of the Internet Engineering Task Force and its
Requests for Comments system.

Requests for Comments

For many geeks, the Internet Engineering Task Force (IETF) and its
Requests for Comments (RFC) system exemplify key features of the
moral and technical order they share, the “stories and practices”
that make up a social imaginary, according to Charles Taylor. The
IETF is a longstanding association of Internet engineers who try to
help disseminate some of the core standards of the Internet through

58 geeks and recursive publics

the RFC process. Membership is open to individuals, and the as-
sociation has very little real control over the structure or growth
of the Internet—only over the key process of Internet standardiza-
tion. Its standards rarely have the kind of political legitimacy that
one associates with international treaties and the standards bodies
of Geneva, but they are nonetheless de facto legitimate. The RFC
process is an unusual standards process that allows modifications
to existing technologies to be made before the standard is final-
ized. Together Internet standards and the RFC process form the
background of the Napster debate and of Jeff Bone’s claims about
“internet routing protocols.”

A famous bit of Internet-governance folklore expresses succinctly
the combination of moral and technical order that geeks share (at-
tributed to IETF member David Clark): “We reject kings, presidents,
and voting. We believe in rough consensus and running code.”29
This quote emphasizes the necessity of arguing with and through
technology, the first aspect of a recursive public; the only argu-
ment that convinces is working code. If it works, then it can be
implemented; if it is implemented, it will “route around” the legal
damage done by the RIAA. The notion of “running code” is cen-
tral to an understanding of the relationship between argument-
by-technology and argument-by-talk for geeks. Very commonly,
the response by geeks to people who argued about Napster that
summer—and the courts’ decisions regarding it—was to dismiss
their complaints as mere talk. Many suggested that if Napster were
shut down, thousands more programs like it would spring up in its
wake. As one mailing-list participant, Ashish “Hash” Gulhati, put
it, “It is precisely these totally unenforceable and mindless judicial
decisions that will start to look like self-satisfied wanking when
there’s code out there which will make the laws worth less than the
paper they’re written on. When it comes to fighting this shit in a
way that counts, everything that isn’t code is just talk.”30

Such powerful rhetoric often collapses the process itself, for some-
one has to write the code. It can even be somewhat paradoxical:
there is a need to talk forcefully about the need for less talk and
more code, as demonstrated by Eugen Leitl when I objected that
Silk-listers were “just talking”: “Of course we should talk. Did my
last post consist of some kickass Python code adding sore-missed
functionality to Mojonation? Nope. Just more meta-level waffle
about the importance of waffling less, coding more. I lack the

59geeks and recursive publics

proper mental equipment upstairs for being a good coder, hence I
attempt to corrupt young impressionable innocents into contribut-
ing to the cause. Unashamedly so. So sue me.”31

Eugen’s flippancy reveals a recognition that there is a political
component to coding, even if, in the end, talk disappears and only
code remains. Though Eugen and others might like to adopt a rhet-
oric that suggests “it will just happen,” in practice none of them re-
ally act that way. Rather, the activities of coding, writing software,
or improving and diversifying the software that exists are not inevi-
table or automatic but have specific characteristics. They require
time and “the proper mental equipment.” The inevitability they
refer to consists not in some fantasy of machine intelligence, but in
a social imaginary shared by many people in loosely connected net-
works who spend all their free time building, downloading, hack-
ing, testing, installing, patching, coding, arguing, blogging, and
proselytizing—in short, creating a recursive public enabled by the
Internet.

Jeff Bone’s op-ed piece, which is typically enthusiastic about the
inevitability of new technologies, still takes time to reference one
of thousands (perhaps tens of thousands) of projects as worthy of
attention and support, a project called Fling, which is an attempt
to rewrite the core protocols of the Internet.32 The goal of the proj-
ect is to write a software implementation of these protocols with
the explicit goal of making them “anonymous, untraceable, and
untappable.” Fling is not a corporation, a start-up, or a university
research project (though some such projects are); it is only a Web
site. The core protocols of the Internet, contained in the RFCs, are
little more than documents describing how computers should inter-
act with each other. They are standards, but of an unusual kind.33
Bone’s leap from a discussion about Napster to one about the core
protocols of the Internet is not unusual. It represents the second
aspect of a recursive public: the importance of understanding the
Internet as a set of “layers,” each enabling the next and each re-
quiring an openness that both prevents central control and leads to
maximum creativity.

RFCs have developed from an informal system of memos into a
formal standardization process over the life of the Internet, as the
IETF and the Internet Society (ISOC) have become more bureau-
cratic entities. The process of writing and maintaining these docu-
ments is particular to the Internet, precisely because the Internet

60 geeks and recursive publics

is the kind of network experiment that facilitates the sharing of
resources across administratively bounded networks. It is a process
that has allowed all the experimenters to both share the network
and to propose changes to it, in a common space. RFCs are primar-
ily suggestions, not demands. They are “public domain” documents
and thus available to everyone with access to the Internet. As David
Clark’s reference to “consensus and running code” demonstrates,
the essential component of setting Internet standards is a good,
working implementation of the protocols. Someone must write soft-
ware that behaves in the ways specified by the RFC, which is, after
all, only a document, not a piece of software. Different implemen-
tations of, for example, the TCP/IP protocol or the File Transfer
Protocol (ftp) depend initially on individuals, groups, and/or cor-
porations building them into an operating-system kernel or a piece
of user software and subsequently on the existence of a large num-
ber of people using the same operating system or application.

In many cases, subsequent to an implementation that has been
disseminated and adopted, the RFCs have been amended to reflect
these working implementations and to ordain them as standards.
So the current standards are actually bootstrapped, through a pro-
cess of writing RFCs, followed by a process of creating implemen-
tations that adhere loosely to the rules in the RFC, then observing
the progress of implementations, and then rewriting RFCs so that
the process begins all over again. The fact that geeks can have a
discussion via e-mail depends on the very existence of both an RFC
to define the e-mail protocol and implementations of software to
send the e-mails.

This standardization process essentially inverts the process of
planning. Instead of planning a system, which is then standard-
ized, refined, and finally built according to specification, the RFC
process allows plans to be proposed, implemented, refined, repro-
posed, rebuilt, and so on until they are adopted by users and be-
come the standard approved of by the IETF. The implication for
most geeks is that this process is permanently and fundamentally
open: changes to it can be proposed, implemented, and adopted
without end, and the better a technology becomes, the more diffi-
cult it becomes to improve on it, and therefore the less reason there
is to subvert it or reinvent it. Counterexamples, in which a standard
emerges but no one adopts it, are also plentiful, and they suggest
that the standardization process extends beyond the proposal-

61geeks and recursive publics

implementation-proposal-standard circle to include the problem of
actually convincing users to switch from one working technology
to a better one. However, such failures of adoption are also seen as
a kind of confirmation of the quality or ease of use of the current
solution, and they are all the more likely to be resisted when some
organization or political entity tries to force users to switch to the
new standard—something the IETF has refrained from doing for
the most part.

Conclusion: Recursive Public

Napster was a familiar and widely discussed instance of the “re-
orientation of power and knowledge” (or in this case, power and
music) wrought by the Internet and the practices of geeks. Napster
was not, however, a recursive public or a Free Software project, but
a dot-com-inspired business plan in which proprietary software was
given away for free in the hopes that revenue would flow from the
stock market, from advertising, or from enhanced versions of the
software. Therefore, geeks did not defend Napster as much as they
experienced its legal restriction as a wake-up call: the Internet en-
ables Napster and will enable many other things, but laws, corpo-
rations, lobbyists, money, and governments can destroy all of it.

I started this chapter by asking what draws geeks together: what
constitutes the chain that binds geeks like Sean and Adrian to hip-
sters in Berlin and to entrepreneurs and programmers in Bangalore?
What constitutes their affinity if it is not any of the conventional
candidates like culture, nation, corporation, or language? A collo-
quial answer might be that it is simply the Internet that brings them
together: cyberspace, virtual communities, online culture. But this
doesn’t answer the question of why? Because they can? Because
Community Is Good? If mere association is the goal, why not AOL
or a vast private network provided by Microsoft?

My answer, by contrast, is that geeks’ affinity with one another is
structured by shared moral and technical understandings of order.
They are a public, an independent public that has the ability to
build, maintain, and modify itself, that is not restricted to the activi-
ties of speaking, writing, arguing, or protesting. Recursive publics
form through their experience with the Internet precisely because
the Internet is the kind of thing they can inhabit and transform. Two

62 geeks and recursive publics

things make recursive publics distinctive: the ability to include the
practice of creating this infrastructure as part of the activity of be-
ing public or contesting control; and the ability to “recurse” through
the layers of that infrastructure, maintaining its publicness at each
level without making it into an unchanging, static, unmodifiable
thing.

The affinity constituted by a recursive public, through the me-
dium of the Internet, creates geeks who understand clearly what
association through the Internet means. This affinity structures
their imagination of what the Internet is and enables: creation,
distribution, modification of knowledge, music, science, software.
The infrastructure—this-infrastructure-here, the Internet—must be
understood as part of this imaginary (in addition to being a pulsat-
ing tangle of computers, wires, waves, and electrons).

The Internet is not the only medium for such association. A cor-
poration, for example, is also based on a shared imaginary of the
economy, of how markets, exchanges, and business cycles are sup-
posed to work; it is the creation of a concrete set of relations and
practices, one that is generally inflexible—even in this age of so-
called flexible capitalism—because it requires a commitment of
time, humans, and capital. Even in fast capitalism one needs to rent
office space, buy toilet paper, install payroll software, and so on.

Software and networks can be equally concrete—connecting
people, capital, and other resources over time and thus creating an
infrastructure—but they are arguably more flexible, more change-
able, and more reprogrammable—than a corporation, a sewage
system, or a stock exchange. The Internet, in particular, especially
in the stories of the IETF and the RFC process, represents a radi-
calization of this flexibility: not only can one create an application
like Napster that takes clever advantage of the layers (protocols,
routers, and routes) of the Internet, but one can actually rewrite
the layers themselves, rendering possible a new class of Napsters.
The difficulty of doing so increases with ever deeper layers, but the
possibility is not (yet) arbitrarily restricted by any organization,
person, law, or government. Affinity—membership in a recursive
public—depends on adopting the moral and technical imaginations
of this kind of order.

The urgency evidenced in the case of Napster (and repeated in
numerous other instances, such as the debate over net neutrality)
is linked to a moral idea of order in which there is a shared imagi-

63geeks and recursive publics

nary of The Public, and not only a vast multiplicity of competing
publics. It is an urgency linked directly to the fact that the Internet
provides geeks with a platform, an environment, an infrastructure
through which they not only associate, but create, and do so in a
manner that is widely felt to be autonomous, autotelic, and inde-
pendent of at least the most conventional forms of power: states
and corporations—independent enough, in fact, that both states
and corporations can make widespread use of this infrastructure
(can become geeks themselves) without necessarily endangering
its independence.

2. Protestant Reformers,

Polymaths, Transhumanists

Geeks talk a lot. They don’t talk about recursive publics. They don’t
often talk about imaginations, infrastructures, moral or technical
orders. But they do talk a lot. A great deal of time and typing is
necessary to create software and networks: learning and talking,
teaching and arguing, telling stories and reading polemics, reflect-
ing on the world in and about the infrastructure one inhabits. In
this chapter I linger on the stories geeks tell, and especially on
stories and reflections that mark out contemporary problems of
knowledge and power—stories about grand issues like progress,
enlightenment, liberty, and freedom.

Issues of enlightenment, progress, and freedom are quite obvi-
ously still part of a “social imaginary,” especially imaginations of
the relationship of knowledge and enlightenment to freedom and
autonomy so clearly at stake in the notion of a public or public

65reformers, polymaths, transhumanists

sphere. And while the example of Free Software illuminates how
issues of enlightenment, progress, and freedom are proposed, con-
tested, and implemented in and through software and networks,
this chapter contains stories that are better understood as “usable
pasts”—less technical and more accessible narratives that make
sense of the contemporary world by reflecting on the past and its
difference from today.

 Usable pasts is a more charitable term for what might be called
modern myths among geeks: stories that the tellers know to be a
combination of fact and fiction. They are told not in order to re-
member the past, but in order to make sense of the present and of
the future. They make sense of practices that are not questioned
in the doing, but which are not easily understood in available in-
tellectual or colloquial terms. The first set of stories I relate are
those about the Protestant Reformation: allegories that make use
of Catholic and Protestant churches, laity, clergy, high priests, and
reformation-era images of control and liberation. It might be sur-
prising that geeks turn to the past (and especially to religious alle-
gory) in order to make sense of the present, but the reason is quite
simple: there are no “ready-to-narrate” stories that make sense of
the practices of geeks today. Precisely because geeks are “figuring
out” things that are not clear or obvious, they are of necessity bereft
of effective ways of talking about it. The Protestant Reformation
makes for good allegory because it separates power from control;
it draws on stories of catechism and ritual, alphabets, pamphlets
and liturgies, indulgences and self-help in order to give geeks a
way to make sense of the distinction between power and control,
and how it relates to the technical and political economy they oc-
cupy. The contemporary relationship among states, corporations,
small businesses, and geeks is not captured by familiar oppositions
like commercial/noncommercial, for/against private property, or
capitalist/socialist—it is a relationship of reform and conversion,
not revolution or overthrow.

Usable pasts are stories, but they are stories that reflect specific
attitudes and specific ways of thinking about the relationship be-
tween past, present, and future. Geeks think and talk a lot about
time, progress, and change, but their conclusions and attitudes are
by no means uniform. Some geeks are much more aware of the
specific historical circumstances and contexts in which they op-
erate, others less so. In this chapter I pose a question via Michel

66 reformers, polymaths, transhumanists

Foucault’s famous short piece “What Is Enlightenment?” Namely,
are geeks modern? For Foucault, rereading Kant’s eponymous
piece from 1784, the problem of being modern (or of an age be-
ing “enlightened”) is not one of a period or epoch that people live
through; rather, it involves a subjective relationship, an attitude.
Kant’s explanation of enlightenment does not suggest that it is itself
a universal, but that it occurs through a form of reflection on what
difference the changes of one’s immediate historical past make to
one’s understanding of the supposed universals of a much longer
history—that is, one must ask why it is necessary to think the way
one does today about problems that have been confronted in ages
past. For Foucault, such reflections must be rooted in the “histori-
cally unique forms in which the generalities of our relations . . .
have been problematized.”1 Thus, I want to ask of geeks, how do
they connect the historically unique problems they confront—from
the Internet to Napster to intellectual property to sharing and re-
using source code—to the generalities of relations in which they
narrate them as problems of liberty, knowledge, power, and en-
lightenment? Or, as Foucault puts it, are they modern in this sense?
Do they “despise the present” or not?

The attitudes that geeks take in responding to these questions
fall along a spectrum that I have identified as ranging from “poly-
maths” to “transhumanists.” These monikers are drawn from real
discussions with geeks, but they don’t designate a kind of person.
They are “subroutines,” perhaps, called from within a larger pro-
gram of moral and technical imaginations of order. It is possible
for the same person to be a polymath at work and a transhumanist
at home, but generally speaking they are conflicting and opposite
mantles. In polymath routines, technology is an intervention into a
complicated, historically unique field of people, customs, organiza-
tions, other technologies, and laws; in transhumanist routines, tech-
nology is seen as an inevitable force—a product of human action,
but not of human design—that is impossible to control or resist
through legal or customary means.

Protestant Reformation

Geeks love allegories about the Protestant Reformation; they relish
stories of Luther and Calvin, of popery and iconoclasm, of reforma-

67reformers, polymaths, transhumanists

tion over revolution. Allegories of Protestant revolt allow geeks to
make sense of the relationship between the state (the monarchy),
large corporations (the Catholic Church), the small start-ups, in-
dividual programmers, and adepts among whom they spend most
of their time (Protestant reformers), and the laity (known as “lus-
ers” and “sheeple”). It gives them a way to assert that they prefer
reformation (to save capitalism from the capitalists) over revolu-
tion. Obviously, not all geeks tell stories of “religious wars” and the
Protestant Reformation, but these images reappear often enough in
conversations that most geeks will more or less instantly recognize
them as a way of making sense of modern corporate, state, and
political power in the arena of information technology: the figures
of Pope, the Catholic Church, the Vatican, the monarchs of various
nations, the laity, the rebel adepts like Luther and Calvin, as well
as models of sectarianism, iconoclasm (“In the beginning was the
Command Line”), politicoreligious power, and arcane theological
argumentation.2 The allegories that unfold provide geeks a way to
make sense of a similarly complex modern situation in which it is
not the Church and the State that struggle, but the Corporation and
the State; and what geeks struggle over are not matters of church
doctrine and organization, but matters of information technology
and its organization as intellectual property and economic motor.
I stress here that this is not an analogy that I myself am making
(though I happily make use of it), but is one that is in wide circula-
tion among the geeks I study. To the historian or religious critic,
it may seem incomplete, or absurd, or bizarre, but it still serves a
specific function, and this is why I highlight it as one component of
the practical and technical ideas of order that geeks share.

At the first level are allegories of “religious war” or “holy war”
(and increasingly, of “jihads”). Such stories reveal a certain cyni-
cism: they describe a technical war of details between two pieces of
software that accomplish the same thing through different means,
so devotion to one or the other is seen as a kind of arbitrary theo-
logical commitment, at once reliant on a pure rationality and re-
quiring aesthetic or political judgment. Such stories imply that two
technologies are equally good and equally bad and that one’s choice
of sect is thus an entirely nonrational one based in the vicissitudes
of background and belief. Some people are zealous proselytizers of
a technology, some are not. As one Usenet message explains: “Re-
ligious ‘wars’ have tended to occur over theological and doctrinal

68 reformers, polymaths, transhumanists

technicalities of one sort or another. The parallels between that
and the computing technicalities that result in ‘computing wars’ are
pretty strong.”3

Perhaps the most familiar and famous of these wars is that be-
tween Apple and Microsoft (formerly between Apple and IBM), a
conflict that is often played out in dramatic and broad strokes that
imply fundamental differences, when in fact the differences are
extremely slight.4 Geeks are also familiar with a wealth of less well-
known “holy wars”: EMACS versus vi; KDE versus Gnome; Linux
versus BSD; Oracle versus all other databases.5

Often the language of the Reformation creeps playfully into oth-
erwise serious attempts to make aesthetic judgments about technol-
ogy, as in this analysis of the programming language tcl/tk:

It’s also not clear that the primary design criterion in tcl, perl, or Visual
BASIC was visual beauty—nor, probably, should it have been. Ouster-
hout said people will vote with their feet. This is important. While the
High Priests in their Ivory Towers design pristine languages of stark
beauty and balanced perfection for their own appreciation, the rest of
the mundane world will in blind and contented ignorance go plodding
along using nasty little languages like those enumerated above. These
poor sots will be getting a great deal of work done, putting bread on
the table for their kids, and getting home at night to share it with
them. The difference is that the priests will shake their fingers at the
laity, and the laity won’t care, because they’ll be in bed asleep.6

In this instance, the “religious war” concerns the difference between
academic programming languages and regular programmers made
equivalent to a distinction between the insularity of the Catholic
Church and the self-help of a protestant laity: the heroes (such as
tcl/tk, perl, and python—all Free Software) are the “nasty little
languages” of the laity; the High Priests design (presumably) Algol,
LISP, and other “academic” languages.

At a second level, however, the allegory makes precise use of
Protestant Reformation details. For example, in a discussion about
the various fights over the Gnu C Compiler (gcc), a central compo-
nent of the various UNIX operating systems, Christopher Browne
posted this counter-reformation allegory to a Usenet group.

The EGCS project was started around two years ago when G++ (and
GCC) development got pretty “stuck.” EGCS sought to integrate to-

69reformers, polymaths, transhumanists

gether a number of the groups of patches that people were making to
the GCC “family.” In effect, there had been a “Protestant Reforma-
tion,” with split-offs of:

a) The GNU FORTRAN Denomination;
b) The Pentium Tuning Sect;
c) The IBM Haifa Instruction Scheduler Denomination;
d) The C++ Standard Acolytes.

These groups had been unable to integrate their efforts (for various
reasons) with the Catholic Version, GCC 2.8. The Ecumenical GNU
Compiler Society sought to draw these groups back into the Catholic
flock. The project was fairly successful; GCC 2.8 was succeeded by
GCC 2.9, which was not a direct upgrade from 2.8, but rather the
results of the EGCS project. EGCS is now GCC.7

In addition to the obvious pleasure with which they deploy the
sectarian aspects of the Protestant Reformation, geeks also allow
themselves to see their struggles as those of Luther-like adepts, con-
fronted by powerful worldly institutions that are distinct but inter-
twined: the Catholic Church and absolutist monarchs. Sometimes
these comparisons are meant to mock theological argument; some-
times they are more straightforwardly hagiographic. For instance,
a 1998 article in Salon compares Martin Luther and Linus Torvalds
(originator of the Linux kernel).

In Luther’s Day, the Roman Catholic Church had a near-monopoly on
the cultural, intellectual and spiritual life of Europe. But the principal
source text informing that life—the Bible—was off limits to ordinary
people. . . . Linus Torvalds is an information-age reformer cut from the
same cloth. Like Luther, his journey began while studying for ordina-
tion into the modern priesthood of computer scientists at the Univer-
sity of Helsinki—far from the seats of power in Redmond and Silicon
Valley. Also like Luther, he had a divine, slightly nutty idea to remove
the intervening bureaucracies and put ordinary folks in a direct rela-
tionship to a higher power—in this case, their computers. Dissolving
the programmer-user distinction, he encouraged ordinary people to
participate in the development of their computing environment. And
just as Luther sought to make the entire sacramental shebang—the
wine, the bread and the translated Word—available to the hoi polloi,
Linus seeks to revoke the developer’s proprietary access to the OS,
insisting that the full operating system source code be delivered—
without cost—to every ordinary Joe at the desktop.8

70 reformers, polymaths, transhumanists

Adepts with strong convictions—monks and priests whose initia-
tion and mastery are evident—make the allegory work. Other uses
of Christian iconography are less, so to speak, faithful to the sources.
Another prominent personality, Richard Stallman, of the Free Soft-
ware Foundation, is prone to dressing as his alter-ego, St. IGNUcius,
patron saint of the church of EMACS—a church with no god, but
intense devotion to a baroque text-processing program of undeni-
able, nigh-miraculous power.9

Often the appeal of Reformation-era rhetoric comes from a
kind of indictment of the present: despite all this high tech, super-
fabulous computronic wonderfulness, we are no less feudal, no less
violent, no less arbitrary and undemocratic; which is to say, geeks
have progressed, have seen the light and the way, but the rest of
society—and especially management and marketing—have not. In
this sense, Reformation allegories are stories of how “things never
change.”

But the most compelling use of the Protestant Reformation as
usable past comes in the more detailed understandings geeks have
of the political economy of information technology. The allego-
rization of the Catholic Church with Microsoft, for instance, is a
frequent component, as in this brief message regarding start-up key
combinations in the Be operating system: “These secret handshakes
are intended to reinforce a cabalistic high priesthood and should
not have been disclosed to the laity. Forget you ever saw this post
and go by [sic] something from Microsoft.”10

More generally, large corporations like IBM, Oracle, or Microsoft
are made to stand in for Catholicism, while bureaucratic congresses
and parliaments with their lobbyists take on the role of absolut-
ist monarchs and their cronies. Geeks can then see themselves as
fighting to uphold Christianity (true capitalism) against the church
(corporations) and to be reforming a way of life that is corrupted
by church and monarchs, instead of overthrowing through revolu-
tion a system they believe to be flawed. There is a historically and
technically specific component of this political economy in which
it is in the interest of corporations like IBM and Microsoft to keep
users “locked as securely to Big Blue as an manacled wretch in a
medieval dungeon.”11

Such stories appeal because they bypass the language of modern
American politics (liberal, conservative, Democrat, Republican) in
which there are only two sides to any issue. They also bypass an

71reformers, polymaths, transhumanists

argument between capitalism and socialism, in which if you are
not pro-capitalism you must be a communist. They are stories that
allow the more pragmatist of the geeks to engage in intervention
and reformation, rather than revolution. Though I’ve rarely heard
it articulated so bluntly, the allegory often implies that one must
“save capitalism from the capitalists,” a sentiment that implies at
least some kind of human control over capitalism.

In fact, the allegorical use of the Reformation and the church
generates all kinds of clever comparisons. A typical description of
such comparisons might go like this: the Catholic Church stands in
for large, publicly traded corporations, especially those control-
ling large amounts of intellectual property (the granting of which
might roughly be equated with the ceremonies of communion and
confession) for which they depend on the assistance and support
of national governments. Naturally, it is the storied excesses of the
church—indulgences, liturgical complexity, ritualistic ceremony,
and corruption—which make for easy allegory. Modern corpora-
tions can be figured as a small, elite papal body with theologians
(executives and their lawyers, boards of directors and their law-
yers), who command a much larger clergy (employees), who serve
a laity (consumers) largely imagined to be sinful (underspending
on music and movies—indeed, even “stealing” them) and thus in
need of elaborate and ritualistic cleansing (advertising and law-
suits) by the church. Access to grace (the American Dream) is medi-
ated only by the church and is given form through the holy acts of
shopping and home improvement. The executives preach messages
of damnation to the government, messages most government of-
ficials are all too willing to hear: do not tamper with our market
share, do not affect our pricing, do not limit our ability to expand
these markets. The executives also offer unaccountable promises of
salvation in the guise of deregulation and the American version of
“reform”—the demolition of state and national social services. Gov-
ernment officials in turn have developed their own “divine right of
kings,” which justifies certain forms of manipulation (once called
“elections”) of succession. Indulgences are sold left and right by
lobbyists or industry associations, and the decrees of the papacy
evidence little but full disconnection from the miserable everyday
existence of the flock.

In fact, it is remarkable how easy such comparisons become the
more details of the political economy of information one learns. But

72 reformers, polymaths, transhumanists

allegories of the Reformation and clerical power can lead easily to
cynicism, which should perhaps be read in this instance as evidence
of political disenfranchisement, rather than a lapse in faith. And
yet the usable pasts of these reformation-minded modern monks
and priests crop up regularly not only because they provide relief
from technical chatter but because they explain a political, tech-
nical, legal situation that does not have ready-to-narrate stories.
Geeks live in a world finely controlled by corporate organizations,
mass media, marketing departments, and lobbyists, yet they share
a profound distrust of government regulation—they need another
set of just-so stories to make sense of it. The standard unusable
pasts of the freeing of markets, the inevitability of capitalism and
democracy, or more lately, the necessity of security don’t do justice
to their experience.

Allegories of Reformation are stories that make sense of the po-
litical economy of information. But they also have a more precise
use: to make sense of the distinction between power and control.
Because geeks are “closer to the machine” than the rest of the laity,
one might reasonably expect them to be the ones in power. This is
clearly not the case, however, and it is the frustrations and mys-
teries by which states, corporations, and individuals manipulate
technical details in order to shift power that often earns the deepest
ire of geeks. Control, therefore, includes the detailed methods and
actual practices by which corporations, government agencies, or
individuals attempt to manipulate people (or enroll them to ma-
nipulate themselves and others) into making technical choices that
serve power, rather than rationality, liberty, elegance, or any other
geekly concern.

Consider the subject of evil. During my conversations with Sean
Doyle in the late 1990s, as well as with a number of other geeks,
the term evil was regularly used to refer to some kind of design or
technical problem. I asked Sean what he meant.

SD: [Evil is] just a term I use to say that something’s wrong, but usu-
ally it means something is wrong on purpose, there was agency be-
hind it. I can’t remember [the example you gave] but I think it may
have been some GE equipment, where it has this default where it
likes to send things in its own private format rather than in DICOM
[the radiology industry standard for digital images], if you give it a
choice. I don’t know why they would have done something like that,

73reformers, polymaths, transhumanists

it doesn’t solve any backward compatibility problem, it’s really just
an exclusionary sort of thing. So I guess there’s Evil like that. . . .

CK: one of the other examples that you had . . . was something with
Internet Explorer 3.0?

SD: Yes, oh yes, there are so many things with IE3 that are completely
Evil. Like here’s one of them: in the http protocol there’s a thing
called the “user agent field” where a browser announces to the server
who it is. If you look at IE, it announces that it is Mozilla, which is
the [code-name for] Netscape. Why did they do this? Well because
a lot of the web servers were sending out certain code that said, if
it were Mozilla they would serve the stuff down, [if not] they would
send out something very simple or stupid that would look very ugly.
But it turned out that [IE3, or maybe IE2] didn’t support things
when it first came out. Like, I don’t think they supported tables, and
later on, their versions of Javascript were so different that there was
no way it was compatible—it just added tremendous complexity. It
was just a way of pissing on the Internet and saying there’s no law
that says we have to follow these Internet standards. We can do as
we damn well please, and we’re so big that you can’t stop us. So I
view it as Evil in that way. I mean they obviously have the talent to
do it. They obviously have the resources to do it. They’ve obviously
done the work, it’s just that they’ll have this little twitch where they
won’t support a certain MIME type or they’ll support some things
differently than others.

CK: But these kinds of incompatibility issues can happen as a result
of a lack of communication or coordination, which might involve
agency at some level, right?

SD: Well, I think of that more as Stupidity than Evil [laughter]. No,
Evil is when there is an opportunity to do something, and an un-
derstanding that there is an opportunity to, and resources and all
that—and then you do something just to spite the other person. You
know I’m sure it’s like in messy divorces, where you would rather
sell the property at half its value rather than have it go to the other
person.

Sean relates control to power by casting the decisions of a large
corporation in a moral light. Although the specific allegory of the
Protestant Reformation does not operate here, the details do. Mi-
crosoft’s decision to manipulate Internet Explorer’s behavior stems
not from a lack of technical sophistication, nor is it an “accident” of

74 reformers, polymaths, transhumanists

complexity, according to Sean, but is a deliberate assertion of eco-
nomic and political power to corrupt the very details by which soft-
ware has been created and standardized and is expected to function.
The clear goal of this activity is conversion, the expansion of Micro-
soft’s flock through a detailed control of the beliefs and practices
(browsers and functionality) of computer users. Calling Microsoft
“Evil” in this way has much the same meaning as questioning the
Catholic Church’s use of ritual, ceremony, literacy, and history—the
details of the “implementation” of religion, so to speak.

Or, in the terms of the Protestant Reformation itself, the practices
of conversion as well as those of liberation, learning, and self-help
are central to the story. It is not an accident that many historians
of the Reformation themselves draw attention to the promises of
liberation through reformation “information technologies.”12 Col-
loquial (and often academic) assertions that the printing press was
technologically necessary or sufficient to bring the Reformation
about appear constantly as a parable of this new age of informa-
tion. Often the printing press is the only “technological” cause con-
sidered, but scholars of the real, historical Reformation also pay
close attention to the fact of widespread literacy, to circulating de-
votional pamphlets, catechisms, and theological tracts, as well as
to the range of transformations of political and legal relationships
that occurred simultaneously with the introduction of the printing
press.

@ ©
One final way to demonstrate the effectiveness of these allegories—

their ability to work on the minds of geeks—is to demonstrate how
they have started to work on me, to demonstrate how much of a
geek I have become—a form of participant allegorization, so to
speak. The longer one considers the problems that make up the con-
temporary political economy of information technology that geeks
inhabit, the more likely it is that these allegories will start to pre-
sent themselves almost automatically—as, for instance, when I read
The Story of A, a delightful book having nothing to do with geeks,
a book about literacy in early America. The author, Patricia Crain,
explains that the Christ’s cross (see above) was often used in the
creation of hornbooks or battledores, small leather-backed paddles
inscribed with the Lord’s Prayer and the alphabet, which were used

75reformers, polymaths, transhumanists

to teach children their ABCs from as early as the fifteenth century
until as late as the nineteenth: “In its early print manifestations,
the pedagogical alphabet is headed not by the letter A but by the
‘Christ’s Cross’: @. . . . Because the alphabet is associated with Cath-
olic Iconography, as if the two sets of signs were really part of one
semiological system, one of the struggles of the Reformation would
be to wrest the alphabet away from the Catholic Church.”13

Here, allegorically, the Catholic Church’s control of the alphabet
(like Microsoft’s programming of Internet Explorer to blur public
standards for the Internet) is not simply ideological; it is not just
a fantasy of origin or ownership planted in the fallow mental soil
of believers, but in fact a very specific, very nonsubjective, and
very media-specific normative tool of control. Crain explains fur-
ther: “Today @ represents the imprimatur of the Catholic Church on
copyright pages. In its connection to the early modern alphabet as
well, this cross carries an imprimatur or licensing effect. This ‘let
it be printed,’ however, is directed not to the artisan printer but
to the mind and memory of the young scholar. . . . Like modern
copyright, the cross authorizes the existence of the alphabet and as-
sociates the letters with sacred authorship, especially since another
long-lived function of @ in liturgical missals is to mark gospel pas-
sages. The symbol both conveys information and generates ritual
behavior.”14

The © today carries as much if not more power, both ideologi-
cally and legally, as the cross of the Catholic church. It is the very
symbol of authorship, even though in origin and in function it gov-
erns only ownership and rights. Magical thinking about copyright
abounds, but one important function of the symbol ©, if not its
legal implications, is to achieve the same thing as the Christ’s cross:
to associate in the mind of the reader the ownership of a particular
text (or in this case, piece of software) with a particular organiza-
tion or person. Furthermore, even though the symbol is an artifact
of national and international law, it creates an association not be-
tween a text and the state or government, but between a text and
particular corporations, publishers, printers, or authors.

Like the Christ’s cross, the copyright symbol carries both a licens-
ing effect (exclusive, limited or nonexclusive) and an imprimatur
on the minds of people: “let it be imprinted in memory” that this is
the work of such and such an author and that this is the property of
such and such a corporation.

76 reformers, polymaths, transhumanists

Without the allegory of the Protestant Reformation, the only
available narrative for such evil—whether it be the behavior of
Microsoft or of some other corporation—is that corporations are
“competing in the marketplace according to the rules of capital-
ism” and thus when geeks decry such behavior, it’s just sour grapes.
If corporations are not breaking any laws, why shouldn’t they be
allowed to achieve control in this manner? In this narrative there
is no room for a moral evaluation of competition—anything goes, it
would seem. Claiming for Microsoft that it is simply playing by the
rules of capitalism puts everyone else into either the competitor
box or the noncompetitor box (the state and other noncompetitive
organizations). Using the allegory of the Protestant Reformation,
on the other hand, gives geeks a way to make sense of an unequal
distribution among competing powers—between large and small
corporations, and between market power and the details of control.
It provides an alternate imagination against which to judge the
technically and legally specific actions that corporations and indi-
viduals take, and to imagine forms of justified action in return.

Without such an allegory, geeks who oppose Microsoft are gen-
erally forced into the position of being anticapitalist or are forced
to adopt the stance that all standards should be publicly gener-
ated and controlled, a position few wish to take. Indeed, many
geeks would prefer a different kind of imaginary altogether—a
recursive public, perhaps. Instead of an infrastructure subject to
unequal distributions of power and shot through with “evil” distor-
tions of technical control, there is, as geeks see it, the possibility
for a “self-leveling” level playing field, an autotelic system of rules,
both technical and legal, by which all participants are expected to
compete equally. Even if it remains an imaginary, the allegory of
the Protestant Reformation makes sense of (gives order to) the po-
litical economy of the contemporary information-technology world
and allows geeks to conceive of their interests and actions accord-
ing to a narrative of reformation, rather than one of revolution or
submission. In the Reformation the interpretation or truth of Chris-
tian teaching was not primarily in question: it was not a doctrinal
revolution, but a bureaucratic one. Likewise, geeks do not question
the rightness of networks, software, or protocols and standards,
nor are they against capitalism or intellectual property, but they
do wish to maintain a space for critique and the moral evaluation
of contemporary capitalism and competition.

77reformers, polymaths, transhumanists

Polymaths and Transhumanists

Usable pasts articulate the conjunction of “operating systems and
social systems,” giving narrative form to imaginations of moral
and technical order. To say that there are no ready-to-narrate sto-
ries about contemporary political economy means only that the
standard colloquial explanations of the state of the modern world
do not do justice to the kinds of moral and technical imaginations
of order that geeks possess by virtue of their practices. Geeks live
in, and build, one kind of world—a world of software, networks,
and infrastructures—but they are often confronted with stories
and explanations that simply don’t match up with their experi-
ence, whether in newspapers and on television, or among nongeek
friends. To many geeks, proselytization seems an obvious route:
why not help friends and neighbors to understand the hidden world
of networks and software, since, they are quite certain, it will come
to structure their lives as well?

Geeks gather through the Internet and, like a self-governing peo-
ple, possess nascent ideas of independence, contract, and constitu-
tion by which they wish to govern themselves and resist governance
by others.15 Conventional political philosophies like libertarianism,
anarchism, and (neo)liberalism only partially capture these social
imaginaries precisely because they make no reference to the op-
erating systems, software, and networks within which geeks live,
work, and in turn seek to build and extend.

Geeks live in specific ways in time and space. They are not just us-
ers of technology, or a “network society,” or a “virtual community,”
but embodied and imagining actors whose affinity for one another
is enabled in new ways by the tools and technologies they have such
deep affective connections to. They live in this-network-here, a histor-
ically unique form grounded in particular social, moral, national,
and historical specificities which nonetheless relates to generalities
such as progress, technology, infrastructure, and liberty. Geeks are
by no means of one mind about such generalities though, and they
often have highly developed means of thinking about them.

Foucault’s article “What Is Enlightenment?” captures part of this
problematic. For Foucault, Kant’s understanding of modernity was
an attempt to rethink the relationship between the passage of his-
torical time and the subjective relationship that individuals have
toward it.

78 reformers, polymaths, transhumanists

Thinking back on Kant’s text, I wonder whether we may not envisage
modernity as an attitude rather than as a period of history. And by
“attitude,” I mean a mode of relating to contemporary reality; a vol-
untary choice made by certain people; in the end, a way of thinking
and feeling; a way, too, of acting and behaving that at one and the
same time marks a relation of belonging and presents itself as a task.
No doubt a bit like what the Greeks called an ethos. And consequently,
rather than seeking to distinguish the “modern era” from the “premod-
ern” or “postmodern,” I think it would be more useful to try to find
out how the attitude of modernity, ever since its formation, has found
itself struggling with attitudes of “countermodernity.”16

In thinking through how geeks understand the present, the past,
and the future, I pose the question of whether they are “modern” in
this sense. Foucault makes use of Baudelaire as his foil for explain-
ing in what the attitude of modernity consists: “For [Baudelaire,]
being modern . . . consists in recapturing something eternal that is
not beyond the present, or behind it, but within it.”17 He suggests
that Baudelaire’s understanding of modernity is “an attitude that
makes it possible to grasp the ‘heroic’ aspect of the present moment
. . . the will to ‘heroize’ the present.”18 Heroic here means some-
thing like redescribing the seemingly fleeting events of the present
in terms that conjure forth the universal or eternal character that
animates them. In Foucault’s channeling of Baudelaire such an at-
titude is incommensurable with one that sees in the passage of
the present into the future some version of autonomous progress
(whether absolute spirit or decadent degeneration), and the tag
he uses for this is “you have no right to despise the present.” To be
modern is to confront the present as a problem that can be trans-
formed by human action, not as an inevitable outcome of processes
beyond the scope of individual or collective human control, that
is, “attitudes of counter-modernity.” When geeks tell stories of the
past to make sense of the future, it is often precisely in order to
“heroize” the present in this sense—but not all geeks do so. Within
the spectrum from polymath to transhumanist, there are attitudes
of both modernity and countermodernity.

The questions I raise here are also those of politics in a classical
sense: Are the geeks I discuss bound by an attitude toward the pres-
ent that concerns such things as the relationship of the public to
the private and the social (à la Hannah Arendt), the relationship

79reformers, polymaths, transhumanists

of economics to liberty (à la John Stuart Mill and John Dewey),
or the possibilities for rational organization of society through the
application of scientific knowledge (à la Friedrich Hayek or Fou-
cault)? Are geeks “enlightened”? Are they Enlightenment rational-
ists? What might this mean so long after the Enlightenment and
its vigorous, wide-ranging critiques? How is their enlightenment
related to the technical and infrastructural commitments they have
made? Or, to put it differently, what makes enlightenment newly
necessary now, in the milieu of the Internet, Free Software, and re-
cursive publics? What kinds of relationships become apparent when
one asks how these geeks relate their own conscious appreciation
of the history and politics of their time to their everyday practices
and commitments? Do geeks despise the present?

Polymaths and transhumanists speak differently about concepts
like technology, infrastructure, networks, and software, and they
have different ideas about their temporality and relationship to
progress and liberty. Some geeks see technology as one kind of in-
tervention into a constituted field of organizations, money, politics,
and people. Some see it as an autonomous force made up of hu-
mans and impersonal forces of evolution and complexity. Different
geeks speak about the role of technology and its relationship to the
present and future in different ways, and how they understand this
relationship is related to their own rich understandings of the com-
plex technical and political environment they live and work in.

Polymaths Polymathy is “avowed dilettantism,” not extreme intel-
ligence. It results from a curiosity that seems to grip a remarkable
number of people who spend their time on the Internet and from
the basic necessity of being able to evaluate and incorporate some-
times quite disparate fields of knowledge in order to build work-
able software. Polymathy inevitably emerges in the context of large
software and networking projects; it is a creature of constraints,
a process bootstrapped by the complex sediment of technologies,
businesses, people, money, and plans. It might also be posed in
the negative: bad software design is often the result of not enough
avowed dilettantism. Polymaths must know a very large and wide
range of things in order to intervene in an existing distribution of
machines, people, practices, and places. They must have a detailed
sense of the present, and the project of the present, in order to imag-
ine how the future might be different.

80 reformers, polymaths, transhumanists

My favorite polymath is Sean Doyle. Sean built the first versions
of a piece of software that forms the centerpiece of the radiological-
image-management company Amicas. In order to build it Sean
learned the following: Java, to program it; the mathematics of
wavelets, to encode the images; the workflow of hospital radiolo-
gists and the manner in which they make diagnoses from images,
to make the interface usable; several incompatible databases and
the SQL database language, to build the archive and repository;
and manual after manual of technical standards, the largest and
most frightening of which was the Digital Imaging and Communi-
cation (DICOM) standard for radiological images. Sean also read
Science and Nature regularly, looking for inspiration about inter-
face design; he read books and articles about imaging very small
things (mosquito knees), very large things (galaxies and interstellar
dust), very old things (fossils), and very pretty things (butterfly-
wing patterns as a function of developmental pathways). Sean also
introduced me to Tibetan food, to Jan Svankmeyer films, to Open
Source Software, to cladistics and paleoherpetology, to Disney’s
scorched-earth policy with respect to culture, and to many other
awesome things.

Sean is clearly an unusual character, but not that unusual. Over
the years I have met many people with a similar range and depth of
knowledge (though rarely with Sean’s humility, which does set him
apart). Polymathy is an occupational hazard for geeks. There is no
sense in which a good programmer, software architect, or informa-
tion architect simply specializes in code. Specialization is seen not
as an end in itself, but rather as a kind of technical prerequisite
before other work—the real work—can be accomplished. The real
work is the design, the process of inserting usable software into a
completely unfamiliar amalgamation of people, organizations, ma-
chines, and practices. Design is hard work, whereas the technical
stuff—like choosing the right language or adhering to a standard or
finding a ready-made piece of code to plug in somewhere—is not.

It is possible for Internet geeks and software architects to think
this way in part due to the fact that so many of the technical issues
they face are both extremely well defined and very easy to address
with a quick search and download. It is easy to be an avowed dilet-
tante in the age of mailing lists, newsgroups, and online scientific
publishing. I myself have learned whole swaths of technical prac-
tices in this manner, but I have designed no technology of note.

81reformers, polymaths, transhumanists

Sean’s partner in Amicas, Adrian Gropper, also fits the bill of
polymath, though he is not a programmer. Adrian, a physician and
a graduate of MIT’s engineering program, might be called a “high-
functioning polymath.” He scans the horizon of technical and sci-
entific accomplishments, looking for ways to incorporate them into
his vision of medical technology qua intervention. Sean mockingly
calls these “delusions,” but both agree that Amicas would be no-
where without them. Adrian and Sean exemplify how the meanings
of technology, intervention, design, and infrastructure are under-
stood by polymaths as a particular form of pragmatic intervention,
a progress achieved through deliberate, piecemeal re-formation of
existing systems. As Adrian comments:

I firmly believe that in the long run the only way you can save money
and improve healthcare is to add technology. I believe that more
strongly than I believe, for instance, that if people invent better pesti-
cides they’ll be able to grow more rice, and it’s for the universal good
of the world to be able to support more people. I have some doubt
as to whether I support people doing genetic engineering of crops
and pesticides as being “to the good.” But I do, however, believe that
healthcare is different in that in the long run you can impact both the
cost and quality of healthcare by adding technology. And you can call
that a religious belief if you want, it’s not rational. But I guess what
I’m willing to say is that traditional healthcare that’s not technology-
based has pretty much run out of steam.19

In this conversation, the “technological” is restricted to the novel
things that can make healthcare less costly (i.e., cost-reducing,
not cost-cutting), ease suffering, or extend life. Certain kinds of
technological intervention are either superfluous or even pointless,
and Adrian can’t quite identify this “class”—it isn’t “technology” in
general, but it includes some kinds of things that are technological.
What is more important is that technology does not solve anything
by itself; it does not obviate the political problems of healthcare
rationing: “Now, however, you get this other problem, which is
that the way that healthcare is rationed is through the fear of pain,
financial pain to some extent, but physical pain; so if you have a
technology that, for instance, makes it relatively painless to fix . . .
I guess, bluntly put, it’s cheaper to let people die in most cases,
and that’s just undeniable. So what I find interesting in all of this,
is that most people who are dealing with the politics of healthcare

82 reformers, polymaths, transhumanists

resource management don’t want to have this discussion, nobody
wants to talk about this, the doctors don’t want to talk about it,
because it’s too depressing to talk about the value of. . . . And they
don’t really have a mandate to talk about technology.”20

Adrian’s self-defined role in this arena is as a nonpracticing phy-
sician who is also an engineer and an entrepreneur—hence, his
polymathy has emerged from his attempts to translate between
doctors, engineers, and businesspeople. His goal is twofold: first,
create technologies that save money and improve the allocation of
healthcare (and the great dream of telemedicine concerns precisely
this goal: the reallocation of the most valuable asset, individuals
and their expertise); second, to raise the level of discussion in the
business-cum-medical world about the role of technology in man-
aging healthcare resources. Polymathy is essential, since Adrian’s
twofold mission requires understanding the language and lives of
at least three distinct groups who work elbow-to-elbow in health-
care: engineers and software architects; doctors and nurses; and
businessmen.

Technology has two different meanings according to Adrian’s two
goals: in the first case technology refers to the intervention by means
of new technologies (from software, to materials, to electronics,
to pharmaceuticals) in specific healthcare situations wherein high
costs or limited access to care can be affected. Sometimes technol-
ogy is allocated, sometimes it does the allocating. Adrian’s goal is
to match his knowledge of state-of-the-art technology—in particu-
lar, Internet technology—with a specific healthcare situation and
thereby effect a reorganization of practices, people, tools, and in-
formation. The tool Amicas created was distinguished by its clever
use of compression, Internet standards, and cheap storage media to
compete with much larger, more expensive, much more entrenched
“legacy” and “turnkey” systems. Whether Amicas invented some-
thing “new” is less interesting than the nature of this intervention
into an existing milieu. This intervention is what Adrian calls “tech-
nology.” For Amicas, the relevant technology—the important inter-
vention—was the Internet, which Amicas conceived as a tool for
changing the nature of the way healthcare was organized. Their
goal was to replace the infrastructure of the hospital radiology
department (and potentially the other departments as well) with
the Internet. Amicas was able to confront and reform the practices
of powerful, entrenched entities, from the administration of large

83reformers, polymaths, transhumanists

hospitals to their corporate bedfellows, like HBOC, Agfa, Siemens,
and GE.

With regard to raising the level of discussion, however, technology
refers to a kind of political-rhetorical argument: technology does
not save the world (nor does it destroy it); it only saves lives—and
it does this only when one makes particular decisions about its al-
location. Or, put differently, the means is technology, but the ends
are still where the action is at. Thus, the hype surrounding infor-
mation technology in healthcare is horrifying to Adrian: promises
precede technologies, and the promises suggest that the means can
replace the ends. Large corporations that promise “technology,”
but offer no real hard interventions (Adrian’s first meaning of tech-
nology) that can be concretely demonstrated to reduce costs or im-
prove allocation are simply a waste of resources. Such companies
are doubly frustrating because they use “technology” as a blinder
that allows people to not think about the hard problems (the ends)
of allocation, equity, management, and organization; that is, they
treat “technology” (the means) as if it were a solution as such.

Adrian routinely analyzes the rhetorical and practical uses of
technology in healthcare with this kind of subtlety; clearly, such
subtlety of thought is rare, and it sets Adrian apart as someone who
understands that intervention into, and reform of, modern organi-
zations and styles of thought has to happen through reformation—
through the clever use of technology by people who understand it
intimately—not through revolution. Reformation through technical
innovation is opposed here to control through the consolidation of
money and power.

In my observations, Adrian always made a point of making the
technology—the software tools and picture-archiving system—
easily accessible, easily demonstrable to customers. When talking
to hospital purchasers, he often said something like “I can show you
the software, and I can tell you the price, and I can demonstrate
the problem it will solve.” In contrast, however, an array of enor-
mous corporations with salesmen and women (usually called con-
sultants) were probably saying something more like “Your hospital
needs more technology, our corporation is big and stable—give us
this much money and we will solve your problem.” For Adrian, the
decision to “hold hands,” as he put it, with the comfortably large
corporation was irrational if the hospital could instead purchase a
specific technology that did a specific thing, for a real price.

84 reformers, polymaths, transhumanists

Adrian’s reflections on technology are also reflections on the na-
ture of progress. Progress is limited intervention structured by goals
that are not set by the technology itself, even if entrepreneurial
activity is specifically focused on finding new uses and new ideas
for new technologies. But discussions about healthcare allocation—
which Adrian sees as a problem amenable to certain kinds of tech-
nical solutions—are instead structured as if technology did not
matter to the nature of the ends. It is a point Adrian resists: “I firmly
believe that in the long run the only way you can save money and
improve healthcare is to add technology.”

Sean is similarly frustrated by the homogenization of the concept
of technology, especially when it is used to suggest, for instance,
that hospitals “lag behind” other industries with regard to com-
puterization, a complaint usually made in order to either instigate
investment or explain failures. Sean first objects to such a homog-
enous notion of “technological.”

I actually have no idea what that means, that it’s lagging behind.
Because certainly in many ways in terms of image processing or some
very high-tech things it’s probably way ahead. And if that means
what’s on people’s desktops, ever since 19-maybe-84 or so when I
arrived at MGH [Massachusetts General Hospital] there’s been a
computer on pretty much everyone’s desktop. . . . It seems like most
hospitals that I have been to seem to have a serious commitment to
networks and automation, etcetera. . . . I don’t know about a lot of
manufacturing industries—they might have computer consoles there,
but it’s a different sort of animal. Farms probably lag really far behind,
I won’t even talk about amusement parks. In some sense, hospitals are
very complicated little communities, and so to say that this thing as a
whole is lagging behind doesn’t make much sense.21

He also objects to the notion that such a lag results in failures
caused by technology, rather than by something like incompetence
or bad management. In fact, it might be fair to say that, for the
polymath, sometimes technology actually dissolves. Its boundar-
ies are not easily drawn, nor are its uses, nor are its purported
“unintended consequences.” On one side there are rules, regula-
tions, protocols, standards, norms, and forms of behavior; on the
other there are organizational structures, business plans and logic,
human skills, and other machines. This complex milieu requires
reform from within: it cannot be replaced wholesale; it cannot leap-

85reformers, polymaths, transhumanists

frog other industries in terms of computerization, as intervention is
always local and strategic; and it involves a more complex relation-
ship to the project of the present than simply “lagging behind” or
“leaping ahead.”

Polymathy—inasmuch as it is a polymathy of the lived experi-
ence of the necessity for multiple expertise to suit a situation—turns
people into pragmatists. Technology is never simply a solution to a
problem, but always part of a series of factors. The polymath, un-
like the technophobe, can see when technology matters and when
it doesn’t. The polymath has a very this-worldly approach to tech-
nology: there is neither mystery nor promise, only human ingenuity
and error. In this manner, polymaths might better be described as
Feyerabendians than as pragmatists (and, indeed, Sean turned out
to be an avid reader of Feyerabend). The polymath feels there is
no single method by which technology works its magic: it is highly
dependent on rules, on patterned actions, and on the observation
of contingent and contextual factors. Intervention into this already
instituted field of people, machines, tools, desires, and beliefs re-
quires a kind of scientific-technical genius, but it is hardly single,
or even autonomous. This version of pragmatism is, as Feyerabend
sometimes refers to it, simply a kind of awareness: of standards, of
rules, of history, of possibility.22 The polymath thus does not allow
himself or herself to despise the present, but insists on both reflect-
ing on it and intervening in it.

Sean and Adrian are avowedly scientific and technical people;
like Feyerabend, they assume that their interlocutors believe in
good science and the benefits of progress. They have little patience
for Luddites, for new-agers, for religious intolerance, or for any
other non-Enlightenment-derived attitude. They do not despise the
present, because they have a well-developed sense of how provi-
sional the conventions of modern technology and business are. Very
little is sacred, and rules, when they exist, are fragile. Breaking
them pointlessly is immodest, but innovation is often itself seen as
a way of transforming a set of accepted rules or practices to other
ends. Progress is limited intervention.23

How ironic, and troubling, then, to realize that Sean’s and Adrian’s
company would eventually become the kind of thing they started
Amicas in order to reform. Outside of the limited intervention, cer-
tain kinds of momentum seem irresistible: the demand for invest-
ment and funding rounds, the need for “professional management,”

86 reformers, polymaths, transhumanists

and the inertia of already streamlined and highly conservative
purchasing practices in healthcare. For Sean and Adrian, Amicas
became a failure in its success. Nonetheless, they remain resolutely
modern polymaths: they do not despise the present. As described in
Kant’s “What Is Enlightenment?” the duty of the citizen is broken
into public and private: on the one hand, a duty to carry out the
responsibilities of an office; on the other, a duty to offer criticism
where criticism is due, as a “scholar” in a reading public. Sean’s
and Adrian’s endeavor, in the form of a private start-up company,
might well be understood as the expression of the scholar’s duty to
offer criticism, through the creation of a particular kind of tech-
nical critique of an existing (and by their assessment) ethically
suspect healthcare system. The mixture of private capital, public
institutions, citizenship, and technology, however, is something
Kant could not have known—and Sean and Adrian’s technical pur-
suits must be understood as something more: a kind of modern civic
duty, in the service of liberty and responding to the particularities
of contemporary technical life.24

Transhumanists Polymathy is born of practical and pragmatic en-
gagement with specific situations, and in some ways is demanded
by such exigencies. Opposite polymathy, however, and leaning more
toward a concern with the whole, with totality and the universal,
are attitudes that I refer to by the label transhumanism, which con-
cerns the mode of belief in the Timeline of Technical Progress.25

Transhumanism, the movement and the philosophy, focuses on
the power of technology to transcend the limitations of the human
body as currently evolved. Subscribers believe—but already this is
the wrong word—in the possibility of downloading consciousness
onto silicon, of cryobiological suspension, of the near emergence of
strong artificial intelligence and of various other forms of techni-
cal augmentation of the human body for the purposes of achieving
immortality—or at least, much more life.26

Various groups could be reasonably included under this label.
There are the most ardent purveyors of the vision, the Extropians;
there are a broad class of people who call themselves transhuman-
ists; there is a French-Canadian subclass, the Raelians, who are
more an alien-worshiping cult than a strictly scientific one and are
bitterly denounced by the first two; there are also the variety of cos-
mologists and engineers who do not formally consider themselves

87reformers, polymaths, transhumanists

transhumanist, but whose beliefs participate in some way or an-
other: Stephen Hawking, Frank Tipler and John Barrow (famous for
their anthropic cosmological principle), Hans Moravic, Ray Kurz-
weil, Danny Hillis, and down the line through those who embrace
the cognitive sciences, the philosophy of artificial intelligence, the
philosophy of mind, the philosophy of science, and so forth.

Historically speaking, the line of descent is diffuse. Teilhard de
Chardin is broadly influential, sometimes acknowledged, sometimes
not (depending on the amount of mysticism allowed). A more gen-
erally recognized starting point is Julian Huxley’s article “Transhu-
manism” in New Bottles for New Wine.27 Huxley’s transhumanism,
like Teilhard’s, has a strange whiff of Nietzsche about it, though
it tends much more strongly in the direction of the evolutionary
emergence of the superman than in the more properly moral sense
Nietzsche gave it. After Huxley, the notion of transhumanism is too
easily identified with eugenics, and it has become one of a series of
midcentury subcultural currents which finds expression largely in
small, non-mainstream places, from the libertarians to Esalen.28

For many observers, transhumanists are a lunatic fringe, bounded
on either side by alien abductees and Ayn Rand–spouting objec-
tivists. However, like so much of the fringe, it merely represents
in crystalline form attitudes that seem to permeate discussions
more broadly, whether as beliefs professed or as beliefs attributed.
Transhumanism, while probably anathema to most people, actu-
ally reveals a very specific attitude toward technical innovation,
technical intervention, and political life that is widespread among
technically adept individuals. It is a belief that has everything to do
also with the timeline of progress and the role of technology in it.

The transhumanist understanding of technological progress can
best be understood through the sometimes serious and sometimes
playful concept of the “singularity,” popularized by the science-fiction
writer and mathematician Vernor Vinge.29 The “singularity” is the
point at which the speed of technical progress is faster than hu-
man comprehension of that progress (and, by implication, than
human control over the course). It is a kind of cave-man parable,
perhaps most beautifully rendered by Stanley Kubrik’s film 2001:
A Space Odyssey (in particular, in the jump-cut early in the film that
turns a hurled bone into a spinning space station, recapitulating
the remarkable adventure of technology in two short seconds of an
otherwise seemingly endless film).

88 reformers, polymaths, transhumanists

In figure 1, on the left hand of the timeline, there is history, or
rather, there is a string of technological inventions (by which is
implied that previous inventions set the stage for later ones) spaced
such that they produce a logarithmic curve that can look very much
like the doomsday population curves that started to appear in the
1960s. Each invention is associated with a name or sometimes a
nation. Beyond the edge of the graph to the right side is the future:
history changes here from a series of inventions to an autonomous
self-inventing technology associated not with individual inven-
tors but with a complex system of evolutionary adaptation that
includes technological as well as biological forms. It is a future in
which “humans” are no longer necessary to the progress of science
and technology: technology-as-extension-of-humans on the left, a
Borg-like autonomous technical intelligence on the right. The fun-

1. Illustration © 2005 Ray Kurzweil. Modifications © 2007 by C. Kelty.
Original work licensed under a Creative Commons Attribution License: http://
en.wikipedia.org/wiki/Image:PPTCountdowntoSingularityLog.jpg.

89reformers, polymaths, transhumanists

damental operation in constructing the “singularity” is the “rea-
soned extrapolation” familiar to the “hard science fiction” writer
or the futurist. One takes present technology as the initial condition
for future possibilities and extrapolates based on the (haphazardly
handled) evidence of past technical speed-up and change.

The position of the observer is always a bit uncertain, since he or
she is naturally projected at the highest (or lowest, depending on
your orientation) point of this curve, but one implication is clear:
that the function or necessity of human reflection on the present
will disappear at the same time that humans do, rendering enlight-
enment a quaint, but necessary, step on the route to superrational,
transhuman immortality.

Strangely, the notion that technical progress has acceleration
seems to precede any sense of what the velocity of progress might
mean in the first instance; technology is presumed to exist in abso-
lute time—from the Big Bang to the heat death of the universe—
and not in any relationship with human life or consciousness. The
singularity is always described from the point of view of a god who
is not God. The fact of technological speed-up is generally treated
as the most obvious thing in the world, reinforced by the constant
refrain in the media of the incredible pace of change in contempo-
rary society.

Why is the singularity important? Because it always implies that
the absolute fact of technical acceleration—this knowing glance
into the future—should order the kinds of interventions that occur
in the present. It is not mute waiting or eschatological certainty
that governs this attitude; rather, it is a mode of historical con-
sciousness that privileges the inevitability of technological progress
over the inevitability of human power. Only by looking into the
future can one manipulate the present in a way that will be widely
meaningful, an attitude that could be expressed as something like
“Those who do not learn from the future are condemned to suffer
in it.” Since it is a philosophy based on the success of human ra-
tionality and ingenuity, rationality and ingenuity are still clearly
essential in the future. They lead, however, to a kind of posthuman
state of constant technological becoming which is inconceivable to
the individual human mind—and can only be comprehended by a
transcendental intelligence that is not God.

Such is a fair description of some strands of transhumanism, and
the reason I highlight them is to characterize the kinds of attitudes

90 reformers, polymaths, transhumanists

toward technology-as-intervention and the ideas of moral and tech-
nical order that geeks can evince. On the far side of polymathy,
geeks are too close to the machine to see a big picture or to think
about imponderable philosophical issues; on the transhuman side,
by contrast, one is constantly reassessing the arcane details of every-
day technical change with respect to a vision of the whole—a vision
of the evolution of technology and its relationship to the humans
that (for the time being) must create and attempt to channel it.

My favorite transhumanist is Eugen Leitl (who is, in fact, an au-
thentic transhumanist and has been vice-chair of the World Trans-
humanist Association). Eugen is Russian-born, lives in Munich, and
once worked in a cryobiology research lab. He is well versed in
chemistry, nanotechnology, artificial-intelligence (AI) research,
computational- and network-complexity research, artificial organs,
cryobiology, materials engineering, and science fiction. He writes,
for example,

If you consider AI handcoded by humans, yes. However, given con-
siderable computational resources (~cubic meter of computronium),
and using suitable start population, you can coevolve machine intelli-
gence on a time scale of much less than a year. After it achieves about
a human level, it is potentially capable of entering an autofeedback
loop. Given that even autoassembly-grade computronium is capable
of running a human-grade intellect in a volume ranging from a sugar
cube to an orange at a speed ranging from 10^4 . . . 10^6 it is easy to
see that the autofeedback loop has explosive dynamics.

(I hope above is intelligible, I’ve been exposed to weird memes for
far too long).30

Eugen is also a polymath (and an autodidact to boot), but in the
conventional sense. Eugen’s polymathy is an avocational necessity:
transhumanists need to keep up with all advances in technology and
science in order to better assess what kinds of human-augmenting
or human-obsolescing technologies are out there. It is not for work
in this world that the transhumanist expands his or her knowledge,
nor quite for the next, but for a “this world” yet to arrive.

Eugen and I were introduced during the Napster debates of 2001,
which seemed at the time to be a knock-down, drag-out conflagra-
tion, but Eugen has been involved in so many online flame wars
that he probably experienced it as a mere blip in an otherwise con-
stant struggle with less-evolved intelligences like mine. Nonethe-

91reformers, polymaths, transhumanists

less, it was one of the more clarifying examples of how geeks think,
and think differently, about technology, infrastructure, networks,
and software. Transhumanism has no truck with old-fashioned
humanism.

> >From: Ramu Narayan . . .
> >I don’t like the
> >notion of technology as an unstoppable force with a will of its
own that
> >has nothing to do with the needs of real people.
[Eugen Leitl:] Emergent large-scale behaviour is nothing new. How
do you intend to control individual behaviour of a large population
of only partially rational agents? They don’t come with too many
convenient behaviour-modifying hooks (pheromones as in social in-
sects, but notice menarche-synch in females sharing quarters), and
for a good reason. The few hooks we have (mob, war, politics, reli-
gion) have been notoriously abused, already. Analogous to apoptosis,
metaindividuals may function using processes deletorious[sic] to its
components (us).31

Eugen’s understanding of what “technological progress” means is
sufficiently complex to confound most of his interlocutors. For one
surprising thing, it is not exactly inevitable. The manner in which
Leitl argues with people is usually a kind of machine-gun prattle of
coevolutionary, game-theoretic, cryptographic sorites. Eugen piles
on the scientific and transhumanist reasoning, and his interlocutors
slowly peel away from the discussion. But it isn’t craziness, hype, or
half-digested popular science—Eugen generally knows his stuff—it
just fits together in a way that almost no one else can quite grasp.
Eugen sees the large-scale adoption and proliferation of technolo-
gies (particularly self-replicating molecular devices and evolution-
ary software algorithms) as a danger that transcends all possibility
of control at the individual or state level. Billions of individual deci-
sions do not “average” into one will, but instead produce complex
dynamics and hang perilously on initial conditions. In discussing
the possibility of the singularity, Eugen suggests, “It could literally
be a science-fair project [that causes the singularity].” If Francis
Bacon’s understanding of the relation between Man and Nature
was that of master and possessor, Eugen’s is its radicalization:
Man is a powerful but ultimately arbitrary force in the progress of
Life-Intelligence. Man is fully incorporated into Nature in this story,

92 reformers, polymaths, transhumanists

so much so that he dissolves into it. Eugen writes, when “life crosses
over into this petri dish which is getting readied, things will become
a lot more lively. . . . I hope we’ll make it.”

For Eugen, the arguments about technology that the polymaths
involve themselves in couldn’t be more parochial. They are im-
portant only insofar as they will set the “initial conditions” for the
grand coevolutionary adventure of technology ahead of us. For the
transhumanist, technology does not dissolve. Instead, it is the so-
lution within which humans are dissolved. Suffering, allocation,
decision making—all these are inessential to the ultimate outcome
of technological progress; they are worldly affairs, even if they con-
cern life and death, and as such, they can be either denounced or
supported, but only with respect to fine-tuning the acceleration to-
ward the singularity. For the transhumanist, one can’t fight the in-
evitability of technical evolution, but one certainly can contribute to
it. Technical progress is thus both law-like and subject to intelligent
manipulation; technical progress is inevitable, but only because of
the power of massively parallel human curiosity.

Considered as one of the modes of thought present in this-worldly
political discussion, the transhumanist (like the polymath) turns
technology into a rhetorical argument. Technology is the more
powerful political argument because “it works.” It is pointless to
argue “about” technology, but not pointless to argue through and
with it. It is pointless to talk about whether stopping technology is
good or bad, because someone will simply build a technology that
will invalidate your argument.

There is still a role for technical invention, but it is strongly dis-
tinguished from political, legal, cultural, or social interventions.
For most transhumanists, there is no rhetoric here, no sophistry,
just the pure truth of “it works”: the pure, undeniable, unstoppable,
and undeconstructable reality of technology. For the transhumanist
attitude, the reality of “working code” has a reality that other as-
sertions about the world do not. Extreme transhumanism replaces
the life-world with the world of the computer, where bad (ethically
bad) ideas won’t compile. Less-staunch versions of transhumanism
simply allow the confusion to operate opportunistically: the prog-
ress of technology is unquestionable (omniscient), and only its ef-
fects on humans are worth investigating.

The pure transhumanist, then, is a countermodern. The transhu-
manist despises the present for its intolerably slow descent into the

93reformers, polymaths, transhumanists

future of immortality and superhuman self-improvement, and fears
destruction because of too much turbulent (and ignorant) human
resistance. One need have no individual conception of the present,
no reflection on or synthetic understanding of it. One only need
contribute to it correctly. One might even go so far as to suggest that
forms of reflection on the present that do not contribute to techni-
cal progress endanger the very future of life-intelligence. Curiosity
and technical innovation are not historical features of Western sci-
ence, but natural features of a human animal that has created its
own conditions for development. Thus, the transhumanists’ histori-
cal consciousness consists largely of a timeline that makes ordered
sense of our place on the progress toward the Singularity.

The moral of the story is not just that technology determines his-
tory, however. Transhumanism is a radically antihumanist position
in which human agency or will—if it even exists—is not ontologi-
cally distinct from the agency of machines and animals and life
itself. Even if it is necessary to organize, do things, make choices,
participate, build, hack, innovate, this does not amount to a belief
in the ability of humans to control their destiny, individually or
collectively. In the end, the transhumanist cannot quite pinpoint
exactly what part of this story is inevitable—except perhaps the
story itself. Technology does not develop without millions of dis-
tributed humans contributing to it; humans cannot evolve without
the explicit human adoption of life-altering and identity-altering
technologies; evolution cannot become inevitable without the ma-
nipulation of environments and struggles for fitness. As in the di-
lemma of Calvinism (wherein one cannot know if one is saved by
one’s good works), the transhumanist must still create technology
according to the particular and parochial demands of the day, but
this by no means determines the eventual outcome of technological
progress. It is a sentiment well articulated by Adam Ferguson and
highlighted repeatedly by Friederich Hayek with respect to human
society: “the result of human action, but not the execution of any
human design.”32

Conclusion

To many observers, geeks exhibit a perhaps bewildering mix of
liberalism, libertarianism, anarchism, idealism, and pragmatism,

94 reformers, polymaths, transhumanists

yet tend to fall firmly into one or another constituted political cat-
egory (liberal, conservative, socialist, capitalist, neoliberal, etc.).
By showing how geeks make use of the Protestant Reformation as a
usable past and how they occupy a spectrum of beliefs about prog-
ress, liberty, and intervention, I hope to resist this urge to classify.
Geeks are an interesting case precisely because they are involved
in the creation of new things that change the meaning of our consti-
tuted political categories. Their politics are mixed up and combined
with the technical details of the Internet, Free Software, and the
various and sundry organizations, laws, people, and practices that
they deal with on a regular basis: operating systems and social sys-
tems. But such mixing does not make Geeks merely technoliberals
or technoconservatives. Rather, it reveals how they think through
the specific, historically unique situation of the Internet to the gen-
eral problems of knowledge and power, liberty and enlightenment,
progress and intervention.

Geeks are not a kind of person: geeks are geeks only insofar as
they come together in new, technically mediated forms of their own
creation and in ways that are not easy to identify (not language,
not culture, not markets, not nations, not telephone books or data-
bases). While their affinity is very clearly constituted through the
Internet, the Internet is not the only reason for that affinity. It is this
collective affinity that I refer to as a recursive public. Because it is
impossible to understand this affinity by trying to identify particu-
lar types of people, it is necessary to turn to historically specific sets
of practices that form the substance of their affinity. Free Software
is an exemplary case—perhaps the exemplar—of a recursive pub-
lic. To understand Free Software through its changing practices not
only gives better access to the life-world of the geek but also reveals
how the structure of a recursive public comes into being and man-
ages to persist and transform, how it can become a powerful form
of life that extends its affinities beyond technophile geeks into the
realms of ordinary life.

Part II    free software

3.The Movement

Part II of Two Bits describes what Free Software is and where it
came from, with each of its five chapters detailing the historical
narrative of a particular kind of practice: creating a movement,
sharing source code, conceptualizing openness or open systems,
writing copyright (and copyleft) licenses, and coordinating collabo-
rations. Taken together, the stories describe Free Software. The sto-
ries have their endpoint (or starting point, genealogically speaking)
in the years 1998–99, when Free Software burst onto the scene: on
the cover of Forbes magazine, as part of the dotcom boom, and in
the boardrooms of venture-capital firms and corporations like IBM
and Netscape. While the chapters that make up part II can be read
discretely to understand the practices that are the sine qua non of
Free Software, they can also be read continuously, as a meandering
story of the history of software and networks stretching from the
late 1950s to the present.

the movement98

Rather than define what makes Free Software free or Open Source
open, Two Bits treats the five practices as parts of a collective tech-
nical experimental system: each component has its own history, de-
velopment, and temporality, but they come together as a package
and emerge as a recognizable thing around 1998–99. As with any
experimental system, changing the components changes the opera-
tion and outcomes of the whole. Free Software so conceived is a
kind of experimental system: its practices can be adopted, adapted,
and modulated in new contexts and new places, but it is one whose
rules are collectively determined and frequently modified. It is pos-
sible to see in each of the five practices where choices about how to
do Free Software reached, or surpassed, certain limits, but nonethe-
less remained part of a system whose identity finally firmed up in
the period 1998–99 and after.

The first of these practices—the making of Free Software into a
movement—is both the most immediately obvious and the most
difficult to grasp. By the term movement I refer to the practice,
among geeks, of arguing about and discussing the structure and
meaning of Free Software: what it consists of, what it is for, and
whether or not it is a movement. Some geeks call Free Software
a movement, and some don’t; some talk about the ideology and
goals of Free Software, and some don’t; some call it Free Software,
while others call it Open Source. Amid all this argument, however,
Free Software geeks recognize that they are all doing the same
thing: the practice of creating a movement is the practice of talk-
ing about the meaning and necessity of the other four practices.
It was in 1998–99 that geeks came to recognize that they were all
doing the same thing and, almost immediately, to argue about
why.1

One way to understand the movement is through the story of
Netscape and the Mozilla Web browser (now known as Firefox).
Not only does this story provide some context for the stories of
geeks presented in part I—and I move here from direct participant
observation to historical and archival research on a phenomenon
that was occurring at roughly the same time—but it also contains
all the elements necessary to understand Free Software. It is full
of discussion and argument about the practices that make up Free
Software: sharing source code, conceiving of openness, writing li-
censes, and coordinating collaborations.

the movement 99

Forking Free Software, 1997–2000

Free Software forked in 1998 when the term Open Source suddenly
appeared (a term previously used only by the CIA to refer to unclas-
sified sources of intelligence). The two terms resulted in two sepa-
rate kinds of narratives: the first, regarding Free Software, stretched
back into the 1980s, promoting software freedom and resistance to
proprietary software “hoarding,” as Richard Stallman, the head of
the Free Software Foundation, refers to it; the second, regarding
Open Source, was associated with the dotcom boom and the evan-
gelism of the libertarian pro-business hacker Eric Raymond, who
focused on the economic value and cost savings that Open Source
Software represented, including the pragmatic (and polymathic)
approach that governed the everyday use of Free Software in some
of the largest online start-ups (Amazon, Yahoo!, HotWired, and oth-
ers all “promoted” Free Software by using it to run their shops).

A critical point in the emergence of Free Software occurred in
1998–99: new names, new narratives, but also new wealth and new
stakes. “Open Source” was premised on dotcom promises of cost-
cutting and “disintermediation” and various other schemes to make
money on it (Cygnus Solutions, an early Free Software company,
playfully tagged itself as “Making Free Software More Affordable”).
VA Linux, for instance, which sold personal-computer systems pre-
installed with Open Source operating systems, had the largest single
initial public offering (IPO) of the stock-market bubble, seeing a
700 percent share-price increase in one day. “Free Software” by
contrast fanned kindling flames of worry over intellectual-property
expansionism and hitched itself to a nascent legal resistance to the
1998 Digital Millennium Copyright Act and Sonny Bono Copyright
Term Extension Act. Prior to 1998, Free Software referred either to
the Free Software Foundation (and the watchful, micromanaging
eye of Stallman) or to one of thousands of different commercial,
avocational, or university-research projects, processes, licenses,
and ideologies that had a variety of names: sourceware, freeware,
shareware, open software, public domain software, and so on. The
term Open Source, by contrast, sought to encompass them all in one
movement.

The event that precipitated this attempted semantic coup d’état
was the release of the source code for Netscape’s Communicator

the movement100

Web browser. It’s tough to overestimate the importance of Netscape
to the fortunes of Free Software. Netscape is justly famous for its
1995 IPO and its decision to offer its core product, Netscape Navi-
gator, for free (meaning a compiled, binary version could be down-
loaded and installed “for zero dollars”). But Netscape is far more
famous among geeks for giving away something else, in 1998: the
source code to Netscape Communicator (née Navigator). Giving
away the Navigator application endeared Netscape to customers
and confused investors. Giving away the Communicator source code
in 1998 endeared Netscape to geeks and confused investors; it was
ignored by customers.

Netscape is important from a number of perspectives. Business-
people and investors knew Netscape as the pet project of the suc-
cessful businessman Jim Clarke, who had founded the specialty
computer manufacturer, Silicon Graphics Incorporated (SGI). To
computer scientists and engineers, especially in the small university
town of Champaign-Urbana, Illinois, Netscape was known as the
highest bidder for the WWW team at the National Center for Super-
computing Applications (NCSA) at the University of Illinois. That
team—Marc Andreessen, Rob McCool, Eric Bina, Jon Mittelhauser,
Aleks Totic, and Chris Houck—had created Mosaic, the first and
most fondly remembered “graphical browser” for surfing the World
Wide Web. Netscape was thus first known as Mosaic Communica-
tions Corporation and switched its name only after legal threats
from NCSA and a rival firm, Spyglass. Among geeks, Netscape was
known as home to a number of Free Software hackers and advo-
cates, most notably Jamie Zawinski, who had rather flamboyantly
broken rank with the Free Software Foundation by forking the
GNU EMACS code to create what was first known as Lucid Emacs
and later as XEmacs. Zawinski would go on to lead the newly free
Netscape browser project, now known as Mozilla.

Meanwhile, most regular computer users remember Netscape
both as an emblem of the dotcom boom’s venture-fed insanity and
as yet another of Microsoft’s victims. Although Netscape exploded
onto the scene in 1995, offering a feature-rich browser that was
an alternative to the bare-bones Mosaic browser, it soon began
to lose ground to Microsoft, which relatively quickly adopted the
strategy of giving away its browser, Internet Explorer, as if it were
part of the Windows operating system; this was a practice that the
U.S. Department of Justice eventually found to be in violation of

the movement 101

antitrust laws and for which Microsoft was convicted, but never
punished.

The nature of Netscape’s decision to release the source code dif-
fers based on which perspective it is seen from. It could appear to
be a business plan modeled on the original success: give away your
product and make money in the stock market. It could appear to be
a strategic, last-gasp effort to outcompete Microsoft. It could also
appear, and did appear to many geeks, to be an attempt to regain
some of that “hacker-cred” it once had acquired by poaching the
NCSA team, or even to be an attempt to “do the right thing” by mak-
ing one of the world’s most useful tools into Free Software. But why
would Netscape reach such a conclusion? By what reasoning would
such a decision seem to be correct? The reasons for Netscape’s deci-
sion to “free the source” recapitulate the five core practices of Free
Software—and provided key momentum for the new movement.

Sharing Source Code Netscape’s decision to share its source code
could only seem surprising in the context of the widespread prac-
tice of keeping source code secret; secrecy was a practice followed
largely in order to prevent competitors from copying a program
and competing with it, but also as a means to control the market it-
self. The World Wide Web that Andreessen’s team at NCSA had cut
their teeth on was itself designed to be “platform independent” and
accessible by any device on the network. In practice, however, this
meant that someone needed to create “browsers” for each different
computer or device. Mosaic was initially created for UNIX, using
the Motif library of the X11 Window System—in short, a very spe-
cific kind of access. Netscape, by contrast, prided itself on “porting”
Netscape Navigator to nearly all available computer architectures.
Indeed, by 1997, plans were under way to create a version of the
browser—written in Java, the programming language created by
Sun Microsystems to “write once, run anywhere”—that would be
completely platform independent.

The Java-based Navigator (called Javagator, of course) created
a problem, however, with respect to the practice of keeping source
code secret. Whenever a program in Java was run, it created a set of
“bytecodes” that were easy to reverse-engineer because they had to
be transmitted from the server to the machine that ran the program
and were thus visible to anyone who might know how and where
to look. Netscape engineers flirted with the idea of deliberately

the movement102

obfuscating these bytecodes to deter competitors from copying them.
How can one compete, the logic goes, if anyone can copy your pro-
gram and make their own ersatz version?

Zawinski, among others, suggested that this was a bad idea: why
not just share the source code and get people to help make it better?
As a longtime participant in Free Software, Zawinski understood
the potential benefits of receiving help from a huge pool of poten-
tial contributors. He urged his peers at Netscape to see the light.
However, although he told them stories and showed them successes,
he could never make the case that this was an intelligent business
plan, only that it was an efficient software-engineering plan. From
the perspective of management and investors, such a move seemed
tantamount to simply giving away the intellectual property of the
company itself.

Frank Hecker, a sales manager, made the link between the de-
velopers and management: “It was obvious to [developers] why it
was important. It wasn’t really clear from a senior management
level why releasing the source code could be of use because nobody
ever made the business case.”2 Hecker penned a document called
“Netscape Source Code as Netscape Product” and circulated it to
various people, including Andreessen and Netscape CEO Jim Barks-
dale. As the title suggests, the business case was that the source
code could also be a product, and in the context of Netscape, whose
business model was “give it away and make it up on the stock mar-
ket,” such a proposal seemed less insane than it otherwise might
have: “When Netscape first made Navigator available for unre-
stricted download over the Internet, many saw this as flying in the
face of conventional wisdom for the commercial software business,
and questioned how we could possibly make money ‘giving our
software away.’ Now of course this strategy is seen in retrospect as
a successful innovation that was a key factor in Netscape’s rapid
growth, and rare is the software company today that does not emu-
late our strategy in one way or another. Among other things, this
provokes the following question: What if we were to repeat this
scenario, only this time with source code?”3

Under the influence of Hecker, Zawinski, and CTO Eric Hahn
(who had also written various internal “heresy documents” suggest-
ing similar approaches), Netscape eventually made the decision to
share their source code with the outside world, a decision that re-
sulted in a famous January 1998 press release describing the aims

the movement 103

and benefits of doing so. The decision, at that particular point in
Netscape’s life, and in the midst of the dotcom boom, was certainly
momentous, but it did not lead either to a financial windfall or to
a suddenly superior product.4

Conceptualizing Open Systems Releasing the source code was, in
a way, an attempt to regain the trust of the people who had first
imagined the www. Tim Berners-Lee, the initial architect of the
www, was always adamant that the protocol and all its imple-
mentations should be freely available (meaning either “in the pub-
lic domain” or “released as Free Software”). Indeed, Berners-Lee
had done just that with his first bare-bones implementations of the
www, proudly declaring them to be in the public domain.

Over the course of the 1990s, the “browser wars” caused both
Netscape and Microsoft to stray far from this vision: each had im-
plemented its own extensions and “features” to the browsers and
servers, extensions not present in the protocol that Berners-Lee
had created or in the subsequent standards created by the World
Wide Web Consortium (W3C). Included in the implementations
were various kinds of “evil” that could make browsers fail to work
on certain operating systems or with certain kinds of servers. The
“browser wars” repeated an open-systems battle from the 1980s,
one in which the attempt to standardize a network operating sys-
tem (UNIX) was stymied by competition and secrecy, at the same
time that consortiums devoted to “openness” were forming in order
to try to prevent the spread of evil. Despite the fact that both Micro-
soft and Netscape were members of the W3C, the noncompatibility
of their browsers clearly represented the manipulation of the stan-
dards process in the name of competitive advantage.

Releasing the source code for Communicator was thus widely
seen as perhaps the only way to bypass the poisoned well of com-
petitively tangled, nonstandard browser implementations. An Open
Source browser could be made to comply with the standards—if
not by the immediate members involved with its creation, then by
creating a “fork” of the program that was standards compliant—
because of the rights of redistribution associated with an Open
Source license. Open Source would be the solution to an open-
systems problem that had never been solved because it had never
confronted the issue of intellectual property directly. Free Software,
by contrast, had a well-developed solution in the GNU General

the movement104

Public License, also known as copyleft license, that would allow
the software to remain free and revive hope for maintaining open
standards.

Writing Licenses Herein lies the rub, however: Netscape was im-
mediately embroiled in controversy among Free Software hackers
because it chose to write its own bespoke licenses for distributing
the source code. Rather than rely on one of the existing licenses,
such as the GNU GPL or the Berkeley Systems Distribution (BSD) or
MIT licenses, they created their own: the Netscape Public License
(NPL) and the Mozilla Public License. The immediate concerns of
Netscape had to do with their existing network of contracts and
agreements with other, third-party developers—both those who
had in the past contributed parts of the existing source code that
Netscape might not have the rights to redistribute as Free Software,
and those who were expecting in the future to buy and redistribute
a commercial version. Existing Free Software licenses were either
too permissive, giving to third parties rights that Netscape itself
might not have, or too restrictive, binding Netscape to make source
code freely available (the GPL) when it had already signed con-
tracts with buyers of the nonfree code.

It was a complex and specific business situation—a network of
existing contracts and licensed code—that created the need for
Netscape to write its own license. The NPL thus contained a clause
that allowed Netscape special permission to relicense any particu-
lar contribution to the source code as a proprietary product in order
to appease its third-party contracts; it essentially gave Netscape
special rights that no other licensee would have. While this did not
necessarily undermine the Free Software licenses—and it was cer-
tainly Netscape’s prerogative—it was contrary to the spirit of Free
Software: it broke the “recursive public” into two halves. In order
to appease Free Software geeks, Netscape wrote one license for ex-
isting code (the NPL) and a different license for new contributions:
the Mozilla Public License.

Neither Stallman nor any other Free Software hacker was entirely
happy with this situation. Stallman pointed out three flaws: “One
flaw sends a bad philosophical message, another puts the free soft-
ware community in a weak position, while the third creates a major
practical problem within the free software community. Two of the
flaws apply to the Mozilla Public License as well.” He urged people

the movement 105

not to use the NPL. Similarly, Bruce Perens suggested, “Many com-
panies have adopted a variation of the MPL [sic] for their own
programs. This is unfortunate, because the NPL was designed for
the specific business situation that Netscape was in at the time it
was written, and is not necessarily appropriate for others to use.
It should remain the license of Netscape and Mozilla, and others
should use the GPL or the BSD or X licenses.”5

Arguments about the fine details of licenses may seem scholastic,
but the decision had a huge impact on the structure of the new
product. As Steven Weber has pointed out, the choice of license
tracks the organization of a product and can determine who and
what kinds of contributions can be made to a project.6 It is not an
idle choice; every new license is scrutinized with the same intensity
or denounced with the same urgency.

Coordinating Collaborations One of the selling points of Free Soft-
ware, and especially of its marketing as Open Source, is that it
leverages the work of thousands or hundreds of thousands of volun-
teer contributors across the Internet. Such a claim almost inevitably
leads to spurious talk of “self-organizing” systems and emergent
properties of distributed collaboration. The Netscape press release
promised to “harness the creative power of thousands of program-
mers on the Internet by incorporating their best enhancements,”
and it quoted CEO Jim Barksdale as saying, “By giving away the
source code for future versions, we can ignite the creative ener-
gies of the entire Net community and fuel unprecedented levels of
innovation in the browser market.”7 But as anyone who has ever
tried to start or run a Free Software project knows, it never works
out that way.

Software engineering is a notoriously hard problem.8 The halls
of the software industry are lined with the warning corpses of dead
software methodologies. Developing software in the dotcom boom
was no different, except that the speed of release cycles and the
velocity of funding (the “burn rate”) was faster than ever before.
Netscape’s in-house development methodologies were designed to
meet these pressures, and as many who work in this field will attest,
that method is some version of a semistructured, deadline-driven,
caffeine- and smart-drink–fueled race to “ship.”9

Releasing the Mozilla code, therefore, required a system of co-
ordination that would differ from the normal practice of in-house

the movement106

software development by paid programmers. It needed to incorpo-
rate the contributions of outsiders—developers who didn’t work for
Netscape. It also needed to entice people to contribute, since that
was the bargain on which the decision to free the source was based,
and to allow them to track their contributions, so they could verify
that their contributions were included or rejected for legitimate
reasons. In short, if any magical Open Source self-organization
were to take place, it would require a thoroughly transparent,
Internet-based coordination system.

At the outset, this meant practical things: obtaining the domain
name mozilla.org; setting up (and in turn releasing the source code
for) the version-control system (the Free Software standard cvs), the
version-control interface (Bonsai), the “build system” that managed
and displayed the various trees and (broken) branches of a complex
software project (Tinderbox), and a bug-reporting system for track-
ing bugs submitted by users and developers (Bugzilla). It required
an organizational system within the Mozilla project, in which paid
developers would be assigned to check submissions from inside and
outside, and maintainers or editors would be designated to look at
and verify that these contributions should be used.

In the end, the release of the Mozilla source code was both a
success and a failure. Its success was long in coming: by 2004,
the Firefox Web browser, based on Mozilla, had started to creep
up the charts of most popular browsers, and it has become one of
the most visible and widely used Free Software applications. The
failure, however, was more immediate: Mozilla failed to reap the
massive benefits for Netscape that the 1995 give-away of Netscape
Navigator had. Zawinski, in a public letter of resignation in April
1999 (one year after the release), expressed this sense of failure.
He attributed Netscape’s decline after 1996 to the fact that it had
“stopped innovating” and become too large to be creative, and de-
scribed the decision to free the Mozilla source code as a return to
this innovation: “[The announcement] was a beacon of hope to me
. . . . [I]t was so crazy, it just might work. I took my cue and ran with
it, registering the domain that night, designing the structure of the
organization, writing the first version of the web site, and, along
with my co-conspirators, explaining to room after room of Netscape
employees and managers how free software worked, and what we
had to do to make it work.”10 For Zawinski, the decision was both
a chance for Netscape to return to its glory and an opportunity

the movement 107

to prove the power of Free Software: “I saw it as a chance for the
code to actually prosper. By making it not be a Netscape project,
but rather, be a public project to which Netscape was merely a
contributor, the fact that Netscape was no longer capable of build-
ing products wouldn’t matter: the outsiders would show Netscape
how it’s done. By putting control of the web browser into the hands
of anyone who cared to step up to the task, we would ensure that
those people would keep it going, out of their own self-interest.”11

But this promise didn’t come true—or, at least, it didn’t come
true at the speed that Zawinski and others in the software world
were used to. Zawinski offered various reasons: the project was
primarily made up of Netscape employees and thus still appeared
to be a Netscape thing; it was too large a project for outsiders to
dive into and make small changes to; the code was too “crufty,”
that is, too complicated, overwritten, and unclean. Perhaps most
important, though, the source code was not actually working: “We
never distributed the source code to a working web browser, more
importantly, to the web browser that people were actually using.”12

Netscape failed to entice. As Zawinski put it, “If someone were
running a web browser, then stopped, added a simple new com-
mand to the source, recompiled, and had that same web browser
plus their addition, they would be motivated to do this again, and
possibly to tackle even larger projects.”13 For Zawinski, the failure
to “ship” a working browser was the biggest failure, and he took
pains to suggest that this failure was not an indictment of Free
Software as such: “Let me assure you that whatever problems the
Mozilla project is having are not because open source doesn’t work.
Open source does work, but it is most definitely not a panacea.
If there’s a cautionary tale here, it is that you can’t take a dying
project, sprinkle it with the magic pixie dust of ‘open source,’ and
have everything magically work out. Software is hard. The issues
aren’t that simple.”14

Fomenting Movements The period from 1 April 1998, when the
Mozilla source code was first released, to 1 April 1999, when Za-
winski announced its failure, couldn’t have been a headier, more
exciting time for participants in Free Software. Netscape’s decision
to release the source code was a tremendous opportunity for geeks
involved in Free Software. It came in the midst of the rollicking dot-
com bubble. It also came in the midst of the widespread adoption of

the movement108

key Free Software tools: the Linux operating system for servers, the
Apache Web server for Web pages, the perl and python scripting
languages for building quick Internet applications, and a number
of other lower-level tools like Bind (an implementation of the DNS
protocol) or sendmail for e-mail.

Perhaps most important, Netscape’s decision came in a period
of fevered and intense self-reflection among people who had been
involved in Free Software in some way, stretching back to the mid-
1980s. Eric Raymond’s article “The Cathedral and The Bazaar,”
delivered at the Linux Kongress in 1997 and the O’Reilly Perl Con-
ference the same year, had started a buzz among Free Software
hackers. It was cited by Frank Hecker and Eric Hahn at Netscape
as one of the sources for their thinking about the decision to free
Mozilla; Raymond and Bruce Perens had both been asked to consult
with Netscape on Free Software strategy. In April of the same year
Tim O’Reilly, a publisher of handbooks for Free Software, orga-
nized a conference called the Freeware Summit.

The Freeware Summit’s very name indicated some of the con-
cern about definition and direction. Stallman, despite his obvious
centrality, but also because of it, was not invited to the Freeware
Summit, and the Free Software Foundation was not held up as the
core philosophical guide of this event. Rather, according to the
press release distributed after the meeting, “The meeting’s purpose
was to facilitate a high-level discussion of the successes and chal-
lenges facing the developers. While this type of software has often
been called ‘freeware’ or ‘free software’ in the past, the developers
agreed that commercial development of the software is part of the
picture, and that the terms ‘open source’ or ‘sourceware’ best de-
scribe the development method they support.”15

It was at this summit that Raymond’s suggestion of “Open Source”
as an alternative name was first publicly debated.16 Shortly there-
after, Raymond and Perens created the Open Source Initiative and
penned “The Open Source Definition.” All of this self-reflection was
intended to capitalize on the waves of attention being directed at
Free Software in the wake of Netscape’s announcement.

The motivations for these changes came from a variety of
sources—ranging from a desire to be included in the dotcom boom
to a powerful (ideological) resistance to being ideological. Linus
Torvalds loudly proclaimed that the reason to do Free Software
was because it was “fun”; others insisted that it made better busi-

the movement 109

ness sense or that the stability of infrastructures like the Internet
depended on a robust ability to improve them from any direction.
But none of them questioned how Free Software got done or pro-
posed to change it.

Raymond’s paper “The Cathedral and the Bazaar” quickly be-
came the most widely told story of how Open Source works and
why it is important; it emphasizes the centrality of novel forms of
coordination over the role of novel copyright licenses or practices
of sharing source code. “The Cathedral and the Bazaar” reports
Raymond’s experiments with Free Software (the bazaar model) and
reflects on the difference between it and methodologies adopted
by industry (the cathedral model). The paper does not truck with
talk of freedom and has no denunciations of software hoarding
à la Stallman. Significantly, it also has no discussion of issues of
licensing. Being a hacker, however, Raymond did give his paper a
“revision-history,” which proudly displays revision 1.29, 9 Febru-
ary 1998: “Changed ‘free software’ to ‘open source.’ ”17

Raymond was determined to reject the philosophy of liberty that
Stallman and the Free Software Foundation represented, but not in
order to create a political movement of his own. Rather, Raymond
(and the others at the Freeware Summit) sought to cash in on the
rising tide of the Internet economy by turning the creation of Free
Software into something that made more sense to investors, venture
capitalists, and the stock-buying public. To Raymond, Stallman and
the Free Software Foundation represented not freedom or liberty,
but a kind of dogmatic, impossible communism. As Raymond was
a committed libertarian, one might expect his core beliefs in the
necessity of strong property rights to conflict with the strange com-
munalism of Free Software—and, indeed, his rhetoric was focused
on pragmatic, business-minded, profit-driven, and market-oriented
uses of Free Software. For Raymond, the essentially interesting
component of Free Software was not its enhancement of human
liberty, but the innovation in software production that it repre-
sented (the “development model”). It was clear that Free Software
achieved something amazing through a clever inversion of strong
property rights, an inversion which could be expected to bring mas-
sive revenue in some other form, either through cost-cutting or,
Netscape-style, through the stock market.

Raymond wanted the business world and the mainstream indus-
try to recognize Free Software’s potential, but he felt that Stallman’s

the movement110

rhetoric was getting in the way. Stallman’s insistence, for example,
on calling corporate intellectual-property protection of software
“hoarding” was doing more damage than good in terms of Free
Software’s acceptance among businesses, as a practice, if not ex-
actly a product.

Raymond’s papers channeled the frustration of an entire genera-
tion of Free Software hackers who may or may not have shared
Stallman’s dogmatic philosophical stance, but who nonetheless
wanted to participate in the creation of Free Software. Raymond’s
paper, the Netscape announcement, and the Freeware Summit all
played into a palpable anxiety: that in the midst of the single larg-
est creation of paper wealth in U.S. history, those being enriched
through Free Software and the Internet were not those who built it,
who maintained it, or who got it.

The Internet giveaway was a conflict of propriety: hackers and
geeks who had built the software that made it work, under the sign
of making it free for all, were seeing that software generate un-
told wealth for people who had not built it (and furthermore, who
had no intention of keeping it free for all). Underlying the creation
of wealth was a commitment to a kind of permanent technical
freedom—a moral order—not shared by those who were reaping
the most profit. This anxiety regarding the expropriation of work
(even if it had been a labor of love) was ramified by Netscape’s
announcement.

All through 1998 and 1999, buzz around Open Source built. Little-
known companies such as Red Hat, VA Linux, Cygnus, Slackware,
and SuSe, which had been providing Free Software support and
services to customers, suddenly entered media and business con-
sciousness. Articles in the mainstream press circulated throughout
the spring and summer of 1998, often attempting to make sense of
the name change and whether it meant a corresponding change in
practice. A front-cover article in Forbes, which featured photos of
Stallman, Larry Wall, Brian Behlendorf, and Torvalds (figure 2),
was noncommittal, cycling between Free Software, Open Source,
and Freeware.18

By early 1999, O’Reilly Press published Open Sources: Voices
from the Open Source Revolution, a hastily written but widely read
book. It included a number of articles—this time including one by
Stallman—that cobbled together the first widely available public
history of Free Software, both the practice and the technologies

the movement 111

involved. Kirk McKusick’s article detailed the history of important
technologies like the BSD version of UNIX, while an article by Brian
Behlendorf, of Apache, detailed the practical challenges of running
Free Software projects. Raymond provided a history of hackers and
a self-aggrandizing article about his own importance in creating
the movement, while Stallman’s contribution told his own version
of the rise of Free Software.

By December 1999, the buzz had reached a fever pitch. When
VA Linux, a legitimate company which actually made something
real—computers with Linux installed on them—went public, its
shares’ value gained 700 percent in one day and was the single

2. “Peace, Love and Software,” cover of Forbes, 10 August 1998. Used
with permission of Forbes and Nathaniel Welch.

the movement112

most valuable initial public offering of the era. VA Linux took the
unconventional step of allowing contributors to the Linux kernel to
buy into the stock before the IPO, thus bringing at least a partial set
of these contributors into the mainstream Ponzi scheme of the Inter-
net dotcom economy. Those who managed to sell their stock ended
up benefiting from the boom, whether or not their contributions
to Free Software truly merited it. In a roundabout way, Raymond,
O’Reilly, Perens, and others behind the name change had achieved
recognition for the central role of Free Software in the success of the
Internet—and now its true name could be known: Open Source.

Yet nothing much changed in terms of the way things actually
got done. Sharing source code, conceiving openness, writing li-
censes, coordinating projects—all these continued as before with
no significant differences between those flashing the heroic mantle
of freedom and those donning the pragmatic tunic of methodology.
Now, however, stories proliferated; definitions, distinctions, details,
and detractions filled the ether of the Internet, ranging from the
philosophical commitments of Free Software to the parables of sci-
ence as the “original open source” software. Free Software propo-
nents refined their message concerning rights, while Open Source
advocates refined their claims of political agnosticism or nonideo-
logical commitments to “fun.” All these stories served to create
movements, to evangelize and advocate and, as Eugen Leitl would
say, to “corrupt young minds” and convert them to the cause. The
fact that there are different narratives for identical practices is an
advantageous fact: regardless of why people think they are doing
what they are doing, they are all nonetheless contributing to the
same mysterious thing.

A Movement?

To most onlookers, Free Software and Open Source seem to be over-
whelmed with frenzied argument; the flame wars and disputes, on-
line and off, seem to dominate everything. To attend a conference
where geeks—especially high-profile geeks like Raymond, Stallman,
and Torvalds—are present, one might suspect that the very de-
tailed practices of Free Software are overseen by the brow-beating,
histrionic antics of a few charismatic leaders and that ideological
commitments result in divergent, incompatible, and affect-laden

the movement 113

opposition which must of necessity take specific and incompatible
forms. Strangely, this is far from the case: all this sound and fury
doesn’t much change what people do, even if it is a requirement of
apprenticeship. It truly is all over but for the shouting.

According to most of the scholarly literature, the function of a
movement is to narrate the shared goals and to recruit new mem-
bers. But is this what happens in Free Software or Open Source?19
To begin with, movement is an awkward word; not all participants
would define their participation this way. Richard Stallman sug-
gests that Free Software is social movement, while Open Source is a
development methodology. Similarly some Open Source proponents
see it as a pragmatic methodology and Free Software as a dogmatic
philosophy. While there are specific entities like the Free Software
Foundation and the Open Source Initiative, they do not comprise
all Free Software or Open Source. Free Software and Open Source
are neither corporations nor organizations nor consortia (for there
are no organizations to consort); they are neither national, sub-
national, nor international; they are not “collectives” because no
membership is required or assumed—indeed to hear someone as-
sert “I belong” to Free Software or Open Source would sound ab-
surd to anyone who does. Neither are they shady bands of hackers,
crackers, or thieves meeting in the dead of night, which is to say
that they are not an “informal” organization, because there is no
formal equivalent to mimic or annul. Nor are they quite a crowd,
for a crowd can attract participants who have no idea what the
goal of the crowd is; also, crowds are temporary, while movements
extend over time. It may be that movement is the best term of the
lot, but unlike social movements, whose organization and momen-
tum are fueled by shared causes or broken by ideological dispute,
Free Software and Open Source share practices first, and ideologies
second. It is this fact that is the strongest confirmation that they
are a recursive public, a form of public that is as concerned with
the material practical means of becoming public as it is with any
given public debate.

The movement, as a practice of argument and discussion, is thus
centered around core agreements about the other four kinds of
practices. The discussion and argument have a specific function:
to tie together divergent practices according to a wide consensus
which tries to capture the why of Free Software. Why is it differ-
ent from normal software development? Why is it necessary? Why

the movement114

now? Why do people do it? Why do people use it? Can it be pre-
served and enhanced? None of these questions address the how:
how should source code circulate? How should a license be written?
Who should be in charge? All of these “hows” change slowly and
experimentally through the careful modulation of the practices,
but the “whys” are turbulent and often distracting. Nonetheless,
people engaged in Free Software—users, developers, supporters,
and observers—could hardly remain silent on this point, despite the
frequent demand to just “shut up and show me the code.” “Figuring
out” Free Software also requires a practice of reflecting on what is
central to it and what is outside of it.

The movement, as a practice of discussion and argument, is made
up of stories. It is a practice of storytelling: affect- and intellect-laden
lore that orients existing participants toward a particular problem,
contests other histories, parries attacks from outside, and draws
in new recruits.20 This includes proselytism and evangelism (and
the usable pasts of protestant reformations, singularities, rebellion
and iconoclasm are often salient here), whether for the reform of
intellectual-property law or for the adoption of Linux in the trenches
of corporate America. It includes both heartfelt allegiance in the
name of social justice as well as political agnosticism stripped of
all ideology.21 Every time Free Software is introduced to someone,
discussed in the media, analyzed in a scholarly work, or installed
in a workplace, a story of either Free Software or Open Source is
used to explain its purpose, its momentum, and its temporality. At
the extremes are the prophets and proselytes themselves: Eric Ray-
mond describes Open Source as an evolutionarily necessary out-
come of the natural tendency of human societies toward economies
of abundance, while Richard Stallman describes it as a defense of
the fundamental freedoms of creativity and speech, using a variety
of philosophical theories of liberty, justice, and the defense of free-
dom.22 Even scholarly analyses must begin with a potted history
drawn from the self-narration of geeks who make or advocate free
software.23 Indeed, as a methodological aside, one reason it is so easy
to track such stories and narratives is because geeks like to tell and,
more important, like to archive such stories—to create Web pages,
definitions, encyclopedia entries, dictionaries, and mini-histories
and to save every scrap of correspondence, every fight, and every
resolution related to their activities. This “archival hubris” yields
a very peculiar and specific kind of fieldsite: one in which a kind

the movement 115

of “as-it-happens” ethnographic observation is possible not only
through “being there” in the moment but also by being there in the
massive, proliferating archives of moments past. Understanding the
movement as a changing entity requires constantly glancing back
at its future promises and the conditions of their making.

Stories of the movement are also stories of a recursive public. The
fact that movement isn’t quite the right word is evidence of a kind
of grasping, a figuring out of why these practices make sense to
all these geeks, in this place and time; it is a practice that is not so
different from my own ethnographic engagement with it. Note that
both Free Software and Open Source tell stories of movement(s):
they are not divided by a commercial-noncommercial line, even
if they are divided by ill-defined and hazy notions of their ulti-
mate goals. The problem of a recursive public (or, in an alternate
language, a recursive market) as a social imaginary of moral and
technical order is common to both of them as part of their prac-
tices. Thus, stories about “the movement” are detailed stories about
the technical and moral order that geeks inhabit, and they are
bound up with the functions and fates of the Internet. Often these
stories are themselves practices of inclusion and exclusion (e.g.,
“this license is not a Free Software license” or “that software is not
an open system”); sometimes the stories are normative definitions
about how Free Software should look. But they are, always, stories
that reveal the shared moral and technical imaginations that make
up Free Software as a recursive public.

Conclusion

Before 1998, there was no movement. There was the Free Soft-
ware Foundation, with its peculiar goals, and a very wide array
of other projects, people, software, and ideas. Then, all of a sud-
den, in the heat of the dotcom boom, Free Software was a move-
ment. Suddenly, it was a problem, a danger, a job, a calling, a
dogma, a solution, a philosophy, a liberation, a methodology, a
business plan, a success, and an alternative. Suddenly, it was Open
Source or Free Software, and it became necessary to choose sides.
After 1998, debates about definition exploded; denunciations and
manifestos and journalistic hagiography proliferated. Ironically,
the creation of two names allowed people to identify one thing, for

the movement116

these two names referred to identical practices, licenses, tools, and
organizations. Free Software and Open Source shared everything
“material,” but differed vocally and at great length with respect
to ideology. Stallman was denounced as a kook, a communist, an
idealist, and a dogmatic holding back the successful adoption of
Open Source by business; Raymond and users of “open source” were
charged with selling out the ideals of freedom and autonomy, with
the dilution of the principles and the promise of Free Software, as
well as with being stooges of capitalist domination. Meanwhile,
both groups proceeded to create objects—principally software—
using tools that they agreed on, concepts of openness that they
agreed on, licenses that they agreed on, and organizational schemes
that they agreed on. Yet never was there fiercer debate about the
definition of Free Software.

On the one hand, the Free Software Foundation privileges the lib-
erty and creativity of individual geeks, geeks engaged in practices
of self-fashioning through the creation of software. It gives prece-
dence to the liberal claim that without freedom of expression, in-
dividuals are robbed of their ability to self-determine. On the other
hand, Open Source privileges organizations and processes, that is,
geeks who are engaged in building businesses, nonprofit organiza-
tions, or governmental and public organizations of some form or
another. It gives precedence to the pragmatist (or polymathic) view
that getting things done requires flexible principles and negotia-
tion, and that the public practice of building and running things
should be separate from the private practice of ethical and politi-
cal beliefs. Both narratives give geeks ways of making sense of a
practice that they share in almost all of its details; both narratives
give geeks a way to understand how Free Software or Open Source
Software is different from the mainstream, proprietary software
development that dominates their horizons. The narratives turn
the haphazard participation and sharing that existed before 1998
into meaningful, goal-directed practices in the present, turning a
class-in-itself into a class-for-itself, to use a terminology for the most
part unwelcome among geeks.

If two radically opposed ideologies can support people engaged
in identical practices, then it seems obvious that the real space of
politics and contestation is at the level of these practices and their
emergence. These practices emerge as a response to a reorientation
of power and knowledge, a reorientation somewhat impervious to

the movement 117

conventional narratives of freedom and liberty, or to pragmatic
claims of methodological necessity or market-driven innovation.
Were these conventional narratives sufficient, the practices would
be merely bureaucratic affairs, rather than the radical transforma-
tions they are.

4. Sharing Source Code

Free Software would be nothing without shared source code. The
idea is built into the very name “Open Source,” and it is a require-
ment of all Free Software licenses that source code be open to view,
not “welded shut.” Perhaps ironically, source code is the most ma-
terial of the five components of Free Software; it is both an ex-
pressive medium, like writing or speech, and a tool that performs
concrete actions. It is a mnemonic that translates between the illeg-
ible electron-speed doings of our machines and our lingering ability
to partially understand and control them as human agents. Many
Free Software programmers and advocates suggest that “informa-
tion wants to be free” and that sharing is a natural condition of
human life, but I argue something contrary: sharing produces its
own kind of moral and technical order, that is, “information makes
people want freedom” and how they want it is related to how that
information is created and circulated. In this chapter I explore the

119sharing source code

twisted and contingent history of how source code and its sharing
have come to take the technical, legal, and pedagogical forms they
have today, and how the norms of sharing have come to seem so
natural to geeks.

Source code is essential to Free Software because of the histori-
cally specific ways in which it has come to be shared, “ported,”
and “forked.” Nothing about the nature of source code requires
that it be shared, either by corporations for whom secrecy and jeal-
ous protection are the norm or by academics and geeks for whom
source code is usually only one expression, or implementation, of
a greater idea worth sharing. However, in the last thirty years,
norms of sharing source code—technical, legal, and pedagogical
norms—have developed into a seemingly natural practice. They
emerged through attempts to make software into a product, such
as IBM’s 1968 “unbundling” of software and hardware, through
attempts to define and control it legally through trade secret, copy-
right, and patent law, and through attempts to teach engineers how
to understand and to create more software.

The story of the norms of sharing source code is, not by accident,
also the history of the UNIX operating system.1 The UNIX operating
system is a monstrous academic-corporate hybrid, an experiment
in portability and sharing whose impact is widely and reverently
acknowledged by geeks, but underappreciated more generally. The
story of UNIX demonstrates the details of how source code has come
to be shared, technically, legally, and pedagogically. In technical
terms UNIX and the programming language C in which it was writ-
ten demonstrated several key ideas in operating-systems theory and
practice, and they led to the widespread “porting” of UNIX to virtu-
ally every kind of hardware available in the 1970s, all around the
world. In legal terms UNIX’s owner, AT&T, licensed it widely and
liberally, in both binary and source-code form; the legal definition
of UNIX as a product, however, was not the same as the technical
definition of UNIX as an evolving experiment in portable operating
systems—a tension that has continued throughout its lifetime. In
pedagogical terms UNIX became the very paradigm of an “operating
system” and was thereby ported not only in the technical sense from
one machine to another, but from machines to minds, as computer-
science students learning the meaning of “operating system” studied
the details of the quasi-legally shared UNIX source code.2

120 sharing source code

The proliferation of UNIX was also a hybrid commercial-academic
undertaking: it was neither a “public domain” object shared solely
among academics, nor was it a conventional commercial product.
Proliferation occurred through novel forms of academic sharing as
well as through licensing schemes constrained by the peculiar sta-
tus of AT&T, a regulated monopoly forbidden to enter the computer
and software industry before 1984. Thus proliferation was not mere
replication: it was not the sale of copies of UNIX, but a complex
web of shared and re-shared chunks of source code, and the re-
implementation of an elegant and simple conceptual scheme. As
UNIX proliferated, it was stabilized in multiple ways: by academics
seeking to keep it whole and self-compatible through contributions
of source code; by lawyers at AT&T seeking to define boundaries
that mapped onto laws, licenses, versions, and regulations; and by
professors seeking to define it as an exemplar of the core concepts
of operating-system theory. In all these ways, UNIX was a kind
of primal recursive public, drawing together people for whom the
meaning of their affiliation was the use, modification, and stabili-
zation of UNIX.

The obverse of proliferation is differentiation: forking. UNIX is
admired for its integrity as a conceptual thing and despised (or
marveled at) for its truly tangled genealogical tree of ports and
forks: new versions of UNIX, some based directly on the source
code, some not, some licensed directly from AT&T, some sublicensed
or completely independent.

Forking, like random mutation, has had both good and bad ef-
fects; on the one hand, it ultimately created versions of UNIX that
were not compatible with themselves (a kind of autoimmune re-
sponse), but it also allowed the merger of UNIX and the Arpanet,
creating a situation wherein UNIX operating systems came to be
not only the paradigm of operating systems but also the paradigm
of networked computers, through its intersection with the develop-
ment of the TCP/IP protocols that are at the core of the Internet.3
By the mid-1980s, UNIX was a kind of obligatory passage point for
anyone interested in networking, operating systems, the Internet,
and especially, modes of creating, sharing, and modifying source
code—so much so that UNIX has become known among geeks not
just as an operating system but as a philosophy, an answer to a
very old question in new garb: how shall we live, among a new
world of machines, software, and networks?

121sharing source code

Before Source

In the early days of computing machinery, there was no such thing
as source code. Alan Turing purportedly liked to talk to the machine
in binary. Grace Hopper, who invented an early compiler, worked
as close to the Harvard Mark I as she could get: flipping switches
and plugging and unplugging relays that made up the “code” of
what the machine would do. Such mechanical and meticulous work
hardly merits the terms reading and writing; there were no GOTO
statements, no line numbers, only calculations that had to be trans-
lated from the pseudo-mathematical writing of engineers and hu-
man computers to a physical or mechanical configuration.4 Writing
and reading source code and programming languages was a long,
slow development that became relatively widespread only by the
mid-1970s. So-called higher-level languages began to appear in the
late 1950s: FORTRAN, COBOL, Algol, and the “compilers” which
allowed for programs written in them to be transformed into the
illegible mechanical and valvular representations of the machine.
It was in this era that the terms source language and target language
emerged to designate the activity of translating higher to lower
level languages.5

There is a certain irony about the computer, not often noted:
the unrivaled power of the computer, if the ubiquitous claims are
believed, rests on its general programmability; it can be made to
do any calculation, in principle. The so-called universal Turing
machine provides the mathematical proof.6 Despite the abstract
power of such certainty, however, we do not live in the world of
The Computer—we live in a world of computers. The hardware sys-
tems that manufacturers created from the 1950s onward were so
specific and idiosyncratic that it was inconceivable that one might
write a program for one machine and then simply run it on another.
“Programming” became a bespoke practice, tailored to each new
machine, and while programmers of a particular machine may well
have shared programs with each other, they would not have seen
much point in sharing with users of a different machine. Likewise,
computer scientists shared mathematical descriptions of algorithms
and ideas for automation with as much enthusiasm as corpora-
tions jealously guarded theirs, but this sharing, or secrecy, did not
extend to the sharing of the program itself. The need to “rewrite”
a program for each machine was not just a historical accident, but

122 sharing source code

was determined by the needs of designers and engineers and the
vicissitudes of the market for such expensive machines.7

In the good old days of computers-the-size-of-rooms, the lan-
guages that humans used to program computers were mnemonics;
they did not exist in the computer, but on a piece of paper or a
specially designed code sheet. The code sheet gave humans who
were not Alan Turing a way to keep track of, to share with other
humans, and to think systematically about the invisible light-speed
calculations of a complicated device. Such mnemonics needed to
be “coded” on punch cards or tape; if engineers conferred, they
conferred over sheets of paper that matched up with wires, relays,
and switches—or, later, printouts of the various machine-specific
codes that represented program and data.

With the introduction of programming languages, the distinction
between a “source” language and a “target” language entered the
practice: source languages were “translated” into the illegible tar-
get language of the machine. Such higher-level source languages
were still mnemonics of sorts—they were certainly easier for hu-
mans to read and write, mostly on yellowing tablets of paper or
special code sheets—but they were also structured enough that a
source language could be input into a computer and translated into
a target language which the designers of the hardware had speci-
fied. Inputting commands and cards and source code required a
series of actions specific to each machine: a particular card reader
or, later, a keypunch with a particular “editor” for entering the
commands. Properly input and translated source code provided the
machine with an assembled binary program that would, in fact,
run (calculate, operate, control). It was a separation, an abstrac-
tion that allowed for a certain division of labor between the in-
genious human authors and the fast and mechanical translating
machines.

Even after the invention of programming languages, program-
ming “on” a computer—sitting at a glowing screen and hacking
through the night—was still a long time in coming. For example,
only by about 1969 was it possible to sit at a keyboard, write source
code, instruct the computer to compile it, then run the program—all
without leaving the keyboard—an activity that was all but unimag-
inable in the early days of “batch processing.”8 Very few program-
mers worked in such a fashion before the mid-1970s, when text
editors that allowed programmers to see the text on a screen rather

123sharing source code

than on a piece of paper started to proliferate.9 We are, by now, so
familiar with the image of the man or woman sitting at a screen
interacting with this device that it is nearly impossible to imagine
how such a seemingly obvious practice was achieved in the first
place—through the slow accumulation of the tools and techniques
for working on a new kind of writing—and how that practice ex-
ploded into a Babel of languages and machines that betrayed the
promise of the general-purpose computing machine.

The proliferation of different machines with different architec-
tures drove a desire, among academics especially, for the standard-
ization of programming languages, not so much because any single
language was better than another, but because it seemed necessary
to most engineers and computer users to share an emerging cor-
pus of algorithms, solutions, and techniques of all kinds, necessary
to avoid reinventing the wheel with each new machine. Algol, a
streamlined language suited to algorithmic and algebraic represen-
tations, emerged in the early 1960s as a candidate for international
standardization. Other languages competed on different strengths:
FORTRAN and COBOL for general business use; LISP for symbolic
processing. At the same time, the desire for a standard “higher-level”
language necessitated a bestiary of translating programs: compil-
ers, parsers, lexical analyzers, and other tools designed to transform
the higher-level (human-readable) language into a machine-specific
lower-level language, that is, machine language, assembly language,
and ultimately the mystical zeroes and ones that course through our
machines. The idea of a standard language and the necessity of de-
vising specific tools for translation are the origin of the problem of
portability: the ability to move software—not just good ideas, but
actual programs, written in a standard language—from one machine
to another.

A standard source language was seen as a way to counteract the
proliferation of different machines with subtly different architec-
tures. Portable source code would allow programmers to imagine
their programs as ships, stopping in at ports of call, docking on dif-
ferent platforms, but remaining essentially mobile and unchanged
by these port-calls. Portable source code became the Esperanto of
humans who had wrought their own Babel of tribal hardware ma-
chines.

Meanwhile, for the computer industry in the 1960s, portable
source code was largely a moot point. Software and hardware were

124 sharing source code

two sides of single, extremely expensive coin—no one, except engi-
neers, cared what language the code was in, so long as it performed
the task at hand for the customer. Each new machine needed to
be different, faster, and, at first, bigger, and then smaller, than
the last. The urge to differentiate machines from each other was
not driven by academic experiment or aesthetic purity, but by a
demand for marketability, competitive advantage, and the trans-
formation of machines and software into products. Each machine
had to do something really well, and it needed to be developed in
secret, in order to beat out the designs and innovations of competi-
tors. In the 1950s and 1960s the software was a core component of
this marketable object; it was not something that in itself was dif-
ferentiated or separately distributed—until IBM’s famous decision
in 1968 to “unbundle” software and hardware.

Before the 1970s, employees of a computer corporation wrote
software in-house. The machine was the product, and the software
was just an extra line-item on the invoice. IBM was not the first
to conceive of software as an independent product with its own
market, however. Two companies, Informatics and Applied Data
Research, had explored the possibilities of a separate market in
software.10 Informatics, in particular, developed the first commer-
cially successful software product, a business-management system
called Mark IV, which in 1967 cost $30,000. Informatics’ president
Walter Bauer “later recalled that potential buyers were ‘astounded’
by the price of Mark IV. In a world accustomed to free software the
price of $30,000 was indeed high.”11

IBM’s unbundling decision marked a watershed, the point at
which “portable” source code became a conceivable idea, if not a
practical reality, to many in the industry.12 Rather than providing
a complete package of hardware and software, IBM decided to dif-
ferentiate its products: to sell software and hardware separately to
consumers.13 But portability was not simply a technical issue; it was
a political-economic one as well. IBM’s decision was driven both by
its desire to create IBM software that ran on all IBM machines (a
central goal of the famous OS/360 project overseen and diagnosed
by Frederick Brooks) and as response to an antitrust suit filed by the
U.S. Department of Justice.14 The antitrust suit included as part of
its claims the suggestion that the close tying of software and hard-
ware represented a form of monopolistic behavior, and it prompted
IBM to consider strategies to “unbundle” its product.

125sharing source code

Portability in the business world meant something specific,
however. Even if software could be made portable at a technical
level—transferable between two different IBM machines—this was
certainly no guarantee that it would be portable between custom-
ers. One company’s accounting program, for example, may not suit
another’s practices. Portability was therefore hindered both by the
diversity of machine architectures and by the diversity of business
practices and organization. IBM and other manufacturers therefore
saw no benefit to standardizing source code, as it could only pro-
vide an advantage to competitors.15

Portability was thus not simply a technical problem—the problem
of running one program on multiple architectures—but also a kind
of political-economic problem. The meaning of product was not al-
ways the same as the meaning of hardware or software, but was usu-
ally some combination of the two. At that early stage, the outlines
of a contest over the meaning of portable or shareable source code
are visible, both in the technical challenges of creating high-level
languages and in the political-economic challenges that corpora-
tions faced in creating distinctive proprietary products.

The UNIX Time-Sharing System

Set against this backdrop, the invention, success, and proliferation
of the UNIX operating system seems quite monstrous, an aberration
of both academic and commercial practice that should have failed
in both realms, instead of becoming the most widely used portable
operating system in history and the very paradigm of an “operating
system” in general. The story of UNIX demonstrates how portability
became a reality and how the particular practice of sharing UNIX
source code became a kind of de facto standard in its wake.

UNIX was first written in 1969 by Ken Thompson and Dennis
Ritchie at Bell Telephone Labs in Murray Hill, New Jersey. UNIX
was the dénouement of the MIT project Multics, which Bell Labs
had funded in part and to which Ken Thompson had been assigned.
Multics was one of the earliest complete time-sharing operating sys-
tems, a demonstration platform for a number of early innovations
in time-sharing (multiple simultaneous users on one computer).16 By
1968, Bell Labs had pulled its support—including Ken Thompson—
from the project and placed him back in Murray Hill, where he and

126 sharing source code

Dennis Ritchie were stuck without a machine, without any money,
and without a project. They were specialists in operating systems,
languages, and machine architecture in a research group that had
no funding or mandate to pursue these areas. Through the creative
use of some discarded equipment, and in relative isolation from the
rest of the lab, Thompson and Ritchie created, in the space of about
two years, a complete operating system, a programming language
called C, and a host of tools that are still in extremely wide use
today. The name UNIX (briefly, UNICS) was, among other things,
a puerile pun: a castrated Multics.

The absence of an economic or corporate mandate for Thomp-
son’s and Ritchie’s creativity and labor was not unusual for Bell
Labs; researchers were free to work on just about anything, so long
as it possessed some kind of vague relation to the interests of AT&T.
However, the lack of funding for a more powerful machine did
restrict the kind of work Thompson and Ritchie could accomplish.
In particular, it influenced the design of the system, which was ori-
ented toward a super-slim control unit (a kernel) that governed the
basic operation of the machine and an expandable suite of small,
independent tools, each of which did one thing well and which
could be strung together to accomplish more complex and powerful
tasks.17 With the help of Joseph Ossana, Douglas McIlroy, and oth-
ers, Thompson and Ritchie eventually managed to agitate for a new
PDP-11/20 based not on the technical merits of the UNIX operating
system itself, but on its potential applications, in particular, those
of the text-preparation group, who were interested in developing
tools for formatting, typesetting, and printing, primarily for the
purpose of creating patent applications, which was, for Bell Labs,
and for AT&T more generally, obviously a laudable goal.18

UNIX was unique for many technical reasons, but also for a spe-
cific economic reason: it was never quite academic and never quite
commercial. Martin Campbell-Kelly notes that UNIX was a “non-
proprietary operating system of major significance.”19 Kelly’s use
of “non-proprietary” is not surprising, but it is incorrect. Although
business-speak regularly opposed open to proprietary throughout the
1980s and early 1990s (and UNIX was definitely the former), Kelly’s
slip marks clearly the confusion between software ownership and
software distribution that permeates both popular and academic
understandings. UNIX was indeed proprietary—it was copyrighted
and wholly owned by Bell Labs and in turn by Western Electric

127sharing source code

and AT&T—but it was not exactly commercialized or marketed by
them. Instead, AT&T allowed individuals and corporations to in-
stall UNIX and to create UNIX-like derivatives for very low licensing
fees. Until about 1982, UNIX was licensed to academics very widely
for a very small sum: usually royalty-free with a minimal service
charge (from about $150 to $800).20 The conditions of this license
allowed researchers to do what they liked with the software so long
as they kept it secret: they could not distribute or use it outside of
their university labs (or use it to create any commercial product
or process), nor publish any part of it. As a result, throughout the
1970s UNIX was developed both by Thompson and Ritchie inside
Bell Labs and by users around the world in a relatively informal
manner. Bell Labs followed such a liberal policy both because it
was one of a small handful of industry-academic research and de-
velopment centers and because AT&T was a government monopoly
that provided phone service to the country and was therefore for-
bidden to directly enter the computer software market.21

Being on the border of business and academia meant that UNIX
was, on the one hand, shielded from the demands of management
and markets, allowing it to achieve the conceptual integrity that
made it so appealing to designers and academics. On the other,
it also meant that AT&T treated it as a potential product in the
emerging software industry, which included new legal questions
from a changing intellectual-property regime, novel forms of mar-
keting and distribution, and new methods of developing, support-
ing, and distributing software.

Despite this borderline status, UNIX was a phenomenal success.
The reasons why UNIX was so popular are manifold; it was widely
admired aesthetically, for its size, and for its clever design and
tools. But the fact that it spread so widely and quickly is testament
also to the existing community of eager computer scientists and en-
gineers (and a few amateurs) onto which it was bootstrapped, users
for whom a powerful, flexible, low-cost, modifiable, and fast oper-
ating system was a revelation of sorts. It was an obvious alternative
to the complex, poorly documented, buggy operating systems that
routinely shipped standard with the machines that universities and
research organizations purchased. “It worked,” in other words.

A key feature of the popularity of UNIX was the inclusion of the
source code. When Bell Labs licensed UNIX, they usually provided
a tape that contained the documentation (i.e., documentation that

128 sharing source code

was part of the system, not a paper technical manual external to
it), a binary version of the software, and the source code for the
software. The practice of distributing the source code encouraged
people to maintain it, extend it, document it—and to contribute
those changes to Thompson and Ritchie as well. By doing so, users
developed an interest in maintaining and supporting the project
precisely because it gave them an opportunity and the tools to use
their computer creatively and flexibly. Such a globally distributed
community of users organized primarily by their interest in main-
taining an operating system is a precursor to the recursive public,
albeit confined to the world of computer scientists and researchers
with access to still relatively expensive machines. As such, UNIX
was not only a widely shared piece of quasi-commercial software
(i.e., distributed in some form other than through a price-based re-
tail market), but also the first to systematically include the source
code as part of that distribution as well, thus appealing more to
academics and engineers.22

Throughout the 1970s, the low licensing fees, the inclusion of
the source code, and its conceptual integrity meant that UNIX was
ported to a remarkable number of other machines. In many ways,
academics found it just as appealing, if not more, to be involved in
the creation and improvement of a cutting-edge system by licens-
ing and porting the software themselves, rather than by having it
provided to them, without the source code, by a company. Peter
Salus, for instance, suggests that people experienced the lack of
support from Bell Labs as a kind of spur to develop and share their
own fixes. The means by which source code was shared, and the
norms and practices of sharing, porting, forking, and modifying
source code were developed in this period as part of the develop-
ment of UNIX itself—the technical design of the system facilitates
and in some cases mirrors the norms and practices of sharing that
developed: operating systems and social systems.23

Sharing UNIX

Over the course of 1974–77 the spread and porting of UNIX was
phenomenal for an operating system that had no formal system of
distribution and no official support from the company that owned
it, and that evolved in a piecemeal way through the contributions

129sharing source code

of people from around the world. By 1975, a user’s group had de-
veloped: USENIX.24 UNIX had spread to Canada, Europe, Australia,
and Japan, and a number of new tools and applications were being
both independently circulated and, significantly, included in the
frequent releases by Bell Labs itself. All during this time, AT&T’s li-
censing department sought to find a balance between allowing this
circulation and innovation to continue, and attempting to maintain
trade-secret status for the software. UNIX was, by 1980, without a
doubt the most widely and deeply understood trade secret in com-
puting history.

The manner in which the circulation of and contribution to UNIX
occurred is not well documented, but it includes both technical and
pedagogical forms of sharing. On the technical side, distribution
took a number of forms, both in resistance to AT&T’s attempts to
control it and facilitated by its unusually liberal licensing of the
software. On the pedagogical side, UNIX quickly became a para-
digmatic object for computer-science students precisely because it
was a working operating system that included the source code and
that was simple enough to explore in a semester or two.

In A Quarter Century of UNIX Salus provides a couple of key sto-
ries (from Ken Thompson and Lou Katz) about how exactly the
technical sharing of UNIX worked, how sharing, porting, and fork-
ing can be distinguished, and how it was neither strictly legal nor
deliberately illegal in this context. First, from Ken Thompson: “The
first thing to realize is that the outside world ran on releases of
UNIX (V4, V5, V6, V7) but we did not. Our view was a continuum.
V5 was what we had at some point in time and was probably out
of date simply by the activity required to put it in shape to export.
After V6, I was preparing to go to Berkeley to teach for a year. I
was putting together a system to take. Since it was almost a release,
I made a diff with V6 [a tape containing only the differences be-
tween the last release and the one Ken was taking with him]. On
the way to Berkeley I stopped by Urbana-Champaign to keep an eye
on Greg Chesson. . . . I left the diff tape there and I told him that I
wouldn’t mind if it got around.”25

The need for a magnetic tape to “get around” marks the differ-
ence between the 1970s and the present: the distribution of soft-
ware involved both the material transport of media and the digital
copying of information. The desire to distribute bug fixes (the “diff ”
tape) resonates with the future emergence of Free Software: the

130 sharing source code

fact that others had fixed problems and contributed them back to
Thompson and Ritchie produced an obligation to see that the fixes
were shared as widely as possible, so that they in turn might be
ported to new machines. Bell Labs, on the other hand, would have
seen this through the lens of software development, requiring a new
release, contract renegotiation, and a new license fee for a new ver-
sion. Thompson’s notion of a “continuum,” rather than a series of
releases also marks the difference between the idea of an evolving
common set of objects stewarded by multiple people in far-flung
locales and the idea of a shrink-wrapped “productized” software
package that was gaining ascendance as an economic commodity
at the same time. When Thompson says “the outside world,” he is
referring not only to people outside of Bell Labs but to the way the
world was seen from within Bell Labs by the lawyers and marketers
who would create a new version. For the lawyers, the circulation of
source code was a problem because it needed to be stabilized, not
so much for commercial reasons as for legal ones—one license for
one piece of software. Distributing updates, fixes, and especially
new tools and additions written by people who were not employed
by Bell Labs scrambled the legal clarity even while it strengthened
the technical quality. Lou Katz makes this explicit.

A large number of bug fixes was collected, and rather than issue them
one at a time, a collection tape (“the 50 fixes”) was put together by
Ken [the same “diff tape,” presumably]. Some of the fixes were quite
important, though I don’t remember any in particular. I suspect that a
significant fraction of the fixes were actually done by non-Bell people. Ken
tried to send it out, but the lawyers kept stalling and stalling and stall-
ing. Finally, in complete disgust, someone “found a tape on Mountain
Avenue” [the location of Bell Labs] which had the fixes. When the
lawyers found out about it, they called every licensee and threatened
them with dire consequences if they didn’t destroy the tape, after try-
ing to find out how they got the tape. I would guess that no one would
actually tell them how they came by the tape (I didn’t).26

Distributing the fixes involved not just a power struggle between
the engineers and management, but was in fact clearly motivated
by the fact that, as Katz says, “a significant fraction of the fixes
were done by non-Bell people.” This meant two things: first, that
there was an obvious incentive to return the updated system to these

131sharing source code

people and to others; second, that it was not obvious that AT&T
actually owned or could claim rights over these fixes—or, if they
did, they needed to cover their legal tracks, which perhaps in part
explains the stalling and threatening of the lawyers, who may have
been buying time to make a “legal” version, with the proper per-
missions.

The struggle should be seen not as one between the rebel forces
of UNIX development and the evil empire of lawyers and manag-
ers, but as a struggle between two modes of stabilizing the object
known as UNIX. For the lawyers, stability implied finding ways to
make UNIX look like a product that would meet the existing legal
framework and the peculiar demands of being a regulated monop-
oly unable to freely compete with other computer manufacturers;
the ownership of bits and pieces, ideas and contributions had to be
strictly accountable. For the programmers, stability came through
redistributing the most up-to-date operating system and sharing
all innovations with all users so that new innovations might also
be portable. The lawyers saw urgency in making UNIX legally sta-
ble; the engineers saw urgency in making UNIX technically stable
and compatible with itself, that is, to prevent the forking of UNIX,
the death knell for portability. The tension between achieving
legal stability of the object and promoting its technical portability
and stability is one that has repeated throughout the life of UNIX
and its derivatives—and that has ramifications in other areas as
well.

The identity and boundaries of UNIX were thus intricately formed
through its sharing and distribution. Sharing produced its own form
of moral and technical order. Troubling questions emerged imme-
diately: were the versions that had been fixed, extended, and ex-
panded still UNIX, and hence still under the control of AT&T? Or
were the differences great enough that something else (not-UNIX)
was emerging? If a tape full of fixes, contributed by non-Bell em-
ployees, was circulated to people who had licensed UNIX, and those
fixes changed the system, was it still UNIX? Was it still UNIX in a
legal sense or in a technical sense or both? While these questions
might seem relatively scholastic, the history of the development
of UNIX suggests something far more interesting: just about every
possible modification has been made, legally and technically, but
the concept of UNIX has remained remarkably stable.

132 sharing source code

Porting UNIX

Technical portability accounts for only part of UNIX’s success. As
a pedagogical resource, UNIX quickly became an indispensable
tool for academics around the world. As it was installed and im-
proved, it was taught and learned. The fact that UNIX spread first
to university computer-science departments, and not to businesses,
government, or nongovernmental organizations, meant that it also
became part of the core pedagogical practice of a generation of
programmers and computer scientists; over the course of the 1970s
and 1980s, UNIX came to exemplify the very concept of an operat-
ing system, especially time-shared, multi-user operating systems.
Two stories describe the porting of UNIX from machines to minds
and illustrate the practice as it developed and how it intersected
with the technical and legal attempts to stabilize UNIX as an ob-
ject: the story of John Lions’s Commentary on Unix 6th Edition and
the story of Andrew Tanenbaum’s Minix.

The development of a pedagogical UNIX lent a new stability to
the concept of UNIX as opposed to its stability as a body of source
code or as a legal entity. The porting of UNIX was so successful that
even in cases where a ported version of UNIX shares none of the same
source code as the original, it is still considered UNIX. The monstrous
and promiscuous nature of UNIX is most clear in the stories of Lions
and Tanenbaum, especially when contrasted with the commercial,
legal, and technical integrity of something like Microsoft Windows,
which generally exists in only a small number of forms (NT, ME,
XP, 95, 98, etc.), possessing carefully controlled source code, im-
mured in legal protection, and distributed only through sales and
service packs to customers or personal-computer manufacturers.
While Windows is much more widely used than UNIX, it is far from
having become a paradigmatic pedagogical object; its integrity is
predominantly legal, not technical or pedagogical. Or, in pedagogi-
cal terms, Windows is to fish as UNIX is to fishing lessons.

Lions’s Commentary is also known as “the most photocopied doc-
ument in computer science.” Lions was a researcher and senior
lecturer at the University of New South Wales in the early 1970s;
after reading the first paper by Ritchie and Thompson on UNIX, he
convinced his colleagues to purchase a license from AT&T.27 Lions,
like many researchers, was impressed by the quality of the system,
and he was, like all of the UNIX users of that period, intimately

133sharing source code

familiar with the UNIX source code—a necessity in order to install,
run, or repair it. Lions began using the system to teach his classes
on operating systems, and in the course of doing so he produced
a textbook of sorts, which consisted of the entire source code of
UNIX version 6 (V6), along with elaborate, line-by-line commen-
tary and explanation. The value of this textbook can hardly be
underestimated. Access to machines and software that could be
used to understand how a real system worked was very limited:
“Real computers with real operating systems were locked up in
machine rooms and committed to processing twenty four hours a
day. UNIX changed that.”28 Berny Goodheart, in an appreciation of
Lions’s Commentary, reiterated this sense of the practical usefulness
of the source code and commentary: “It is important to understand
the significance of John’s work at that time: for students study-
ing computer science in the 1970s, complex issues such as process
scheduling, security, synchronization, file systems and other con-
cepts were beyond normal comprehension and were extremely diffi-
cult to teach—there simply wasn’t anything available with enough
accessibility for students to use as a case study. Instead a student’s
discipline in computer science was earned by punching holes in
cards, collecting fan-fold paper printouts, and so on. Basically, a
computer operating system in that era was considered to be a huge
chunk of inaccessible proprietary code.”29

Lions’s commentary was a unique document in the world of com-
puter science, containing a kind of key to learning about a central
component of the computer, one that very few people would have
had access to in the 1970s. It shows how UNIX was ported not only
to machines (which were scarce) but also to the minds of young
researchers and student programmers (which were plentiful). Sev-
eral generations of both academic computer scientists and students
who went on to work for computer or software corporations were
trained on photocopies of UNIX source code, with a whiff of toner
and illicit circulation: a distributed operating system in the textual
sense.

Unfortunately, Commentary was also legally restricted in its dis-
tribution. AT&T and Western Electric, in hopes that they could
maintain trade-secret status for UNIX, allowed only very limited
circulation of the book. At first, Lions was given permission to dis-
tribute single copies only to people who already possessed a license
for UNIX V6; later Bell Labs itself would distribute Commentary

134 sharing source code

briefly, but only to licensed users, and not for sale, distribution,
or copying. Nonetheless, nearly everyone seems to have possessed
a dog-eared, nth-generation copy. Peter Reintjes writes, “We soon
came into possession of what looked like a fifth generation photo-
copy and someone who shall remain nameless spent all night in
the copier room spawning a sixth, an act expressly forbidden by
a carefully worded disclaimer on the first page. Four remarkable
things were happening at the same time. One, we had discovered
the first piece of software that would inspire rather than annoy
us; two, we had acquired what amounted to a literary criticism
of that computer software; three, we were making the single most
significant advancement of our education in computer science by
actually reading an entire operating system; and four, we were
breaking the law.”30

Thus, these generations of computer-science students and aca-
demics shared a secret—a trade secret become open secret. Every
student who learned the essentials of the UNIX operating sys-
tem from a photocopy of Lions’s commentary, also learned about
AT&T’s attempt to control its legal distribution on the front cover
of their textbook. The parallel development of photocopying has a
nice resonance here; together with home cassette taping of music
and the introduction of the video-cassette recorder, photocopying
helped drive the changes to copyright law adopted in 1976.

Thirty years later, and long after the source code in it had been
completely replaced, Lions’s Commentary is still widely admired by
geeks. Even though Free Software has come full circle in providing
students with an actual operating system that can be legally stud-
ied, taught, copied, and implemented, the kind of “literary criticism”
that Lions’s work represents is still extremely rare; even reading ob-
solete code with clear commentary is one of the few ways to truly
understand the design elements and clever implementations that
made the UNIX operating system so different from its predecessors
and even many of its successors, few, if any of which have been so
successfully ported to the minds of so many students.

Lions’s Commentary contributed to the creation of a worldwide
community of people whose connection to each other was formed
by a body of source code, both in its implemented form and in its
textual, photocopied form. This nascent recursive public not only
understood itself as belonging to a technical elite which was consti-
tuted by its creation, understanding, and promotion of a particular

135sharing source code

technical tool, but also recognized itself as “breaking the law,” a
community constituted in opposition to forms of power that gov-
erned the circulation, distribution, modification, and creation of
the very tools they were learning to make as part of their vocation.
The material connection shared around the world by UNIX-loving
geeks to their source code is not a mere technical experience, but a
social and legal one as well.

Lions was not the only researcher to recognize that teaching the
source code was the swiftest route to comprehension. The other
story of the circulation of source code concerns Andrew Tanenbaum,
a well-respected computer scientist and an author of standard text-
books on computer architecture, operating systems, and network-
ing.31 In the 1970s Tanenbaum had also used UNIX as a teaching
tool in classes at the Vrije Universiteit, in Amsterdam. Because the
source code was distributed with the binary code, he could have his
students explore directly the implementations of the system, and he
often used the source code and the Lions book in his classes. But, ac-
cording to his Operating Systems: Design and Implementation (1987),
“When AT&T released Version 7 [ca. 1979], it began to realize that
UNIX was a valuable commercial product, so it issued Version 7
with a license that prohibited the source code from being studied in
courses, in order to avoid endangering its status as a trade secret.
Many universities complied by simply dropping the study of UNIX,
and teaching only theory” (13). For Tanenbaum, this was an unac-
ceptable alternative—but so, apparently, was continuing to break
the law by teaching UNIX in his courses. And so he proceeded to
create a completely new UNIX-like operating system that used not
a single line of AT&T source code. He called his creation Minix. It
was a stripped-down version intended to run on personal computers
(IBM PCs), and to be distributed along with the textbook Operating
Systems, published by Prentice Hall.32

Minix became as widely used in the 1980s as a teaching tool as
Lions’s source code had been in the 1970s. According to Tanen-
baum, the Usenet group comp.os.minix had reached 40,000 mem-
bers by the late 1980s, and he was receiving constant suggestions
for changes and improvements to the operating system. His own
commitment to teaching meant that he incorporated few of these
suggestions, an effort to keep the system simple enough to be
printed in a textbook and understood by undergraduates. Minix

136 sharing source code

was freely available as source code, and it was a fully function-
ing operating system, even a potential alternative to UNIX that
would run on a personal computer. Here was a clear example of the
conceptual integrity of UNIX being communicated to another gen-
eration of computer-science students: Tanenbaum’s textbook is not
called “UNIX Operating Systems”—it is called Operating Systems.
The clear implication is that UNIX represented the clearest example
of the principles that should guide the creation of any operating
system: it was, for all intents and purposes, state of the art even
twenty years after it was first conceived.

Minix was not commercial software, but nor was it Free Soft-
ware. It was copyrighted and controlled by Tanenbaum’s publisher,
Prentice Hall. Because it used no AT&T source code, Minix was also
legally independent, a legal object of its own. The fact that it was
intended to be legally distinct from, yet conceptually true to UNIX
is a clear indication of the kinds of tensions that govern the cre-
ation and sharing of source code. The ironic apotheosis of Minix as
the pedagogical gold standard for studying UNIX came in 1991–92,
when a young Linus Torvalds created a “fork” of Minix, also rewrit-
ten from scratch, that would go on to become the paradigmatic
piece of Free Software: Linux. Tanenbaum’s purpose for Minix was
that it remain a pedagogically useful operating system—small,
concise, and illustrative—whereas Torvalds wanted to extend and
expand his version of Minix to take full advantage of the kinds of
hardware being produced in the 1990s. Both, however, were com-
mitted to source-code visibility and sharing as the swiftest route to
complete comprehension of operating-systems principles.

Forking UNIX

Tanenbaum’s need to produce Minix was driven by a desire to share
the source code of UNIX with students, a desire AT&T was mani-
festly uncomfortable with and which threatened the trade-secret
status of their property. The fact that Minix might be called a fork
of UNIX is a key aspect of the political economy of operating sys-
tems and social systems. Forking generally refers to the creation of
new, modified source code from an original base of source code,
resulting in two distinct programs with the same parent. Whereas
the modification of an engine results only in a modified engine, the

137sharing source code

modification of source code implies differentiation and reproduc-
tion, because of the ease with which it can be copied.

How could Minix—a complete rewrite—still be considered the
same object? Considered solely from the perspective of trade-secret
law, the two objects were distinct, though from the perspective
of copyright there was perhaps a case for infringement, although
AT&T did not rely on copyright as much as on trade secret. From
a technical perspective, the functions and processes that the soft-
ware accomplishes are the same, but the means by which they are
coded to do so are different. And from a pedagogical standpoint,
the two are identical—they exemplify certain core features of an
operating system (file-system structure, memory paging, process
management)—all the rest is optimization, or bells and whistles.
Understanding the nature of forking requires also that UNIX be
understood from a social perspective, that is, from the perspective
of an operating system created and modified by user-developers
around the world according to particular and partial demands. It
forms the basis for the emergence of a robust recursive public.

One of the more important instances of the forking of UNIX’s
perambulatory source code and the developing community of UNIX
co-developers is the story of the Berkeley Software Distribution and
its incorporation of the TCP/IP protocols. In 1975 Ken Thompson
took a sabbatical in his hometown of Berkeley, California, where
he helped members of the computer-science department with their
installations of UNIX, arriving with V6 and the “50 bug fixes” diff
tape. Ken had begun work on a compiler for the Pascal program-
ming language that would run on UNIX, and this work was taken
up by two young graduate students: Bill Joy and Chuck Hartley.
(Joy would later co-found Sun Microsystems, one of the most suc-
cessful UNIX-based workstation companies in the history of the
industry.)

Joy, above nearly all others, enthusiastically participated in the
informal distribution of source code. With a popular and well-built
Pascal system, and a new text editor called ex (later vi), he created
the Berkeley Software Distribution (BSD), a set of tools that could
be used in combination with the UNIX operating system. They were
extensions to the original UNIX operating system, but not a com-
plete, rewritten version that might replace it. By all accounts, Joy
served as a kind of one-man software-distribution house, making
tapes and posting them, taking orders and cashing checks—all in

138 sharing source code

addition to creating software.33 UNIX users around the world soon
learned of this valuable set of extensions to the system, and be-
fore long, many were differentiating between AT&T UNIX and BSD
UNIX.

According to Don Libes, Bell Labs allowed Berkeley to distribute its
extensions to UNIX so long as the recipients also had a license from
Bell Labs for the original UNIX (an arrangement similar to the one
that governed Lions’s Commentary).34 From about 1976 until about
1981, BSD slowly became an independent distribution—indeed, a
complete version of UNIX—well-known for the vi editor and the
Pascal compiler, but also for the addition of virtual memory and its
implementation on DEC’s VAX machines.35 It should be clear that
the unusual quasi-commercial status of AT&T’s UNIX allowed for
this situation in a way that a fully commercial computer corpora-
tion would never have allowed. Consider, for instance, the fact that
many UNIX users—students at a university, for instance—could
not essentially know whether they were using an AT&T product
or something called BSD UNIX created at Berkeley. The operating
system functioned in the same way and, except for the presence of
copyright notices that occasionally flashed on the screen, did not
make any show of asserting its brand identity (that would come
later, in the 1980s). Whereas a commercial computer manufacturer
would have allowed something like BSD only if it were incorpo-
rated into and distributed as a single, marketable, and identifiable
product with a clever name, AT&T turned something of a blind eye
to the proliferation and spread of AT&T UNIX and the result were
forks in the project: distinct bodies of source code, each an instance
of something called UNIX.

As BSD developed, it gained different kinds of functionality than
the UNIX from which it was spawned. The most significant develop-
ment was the inclusion of code that allowed it to connect computers
to the Arpanet, using the TCP/IP protocols designed by Vinton Cerf
and Robert Kahn. The TCP/IP protocols were a key feature of the
Arpanet, overseen by the Information Processing and Techniques
Office (IPTO) of the Defense Advanced Research Projects Agency
(DARPA) from its inception in 1967 until about 1977. The goal of
the protocols was to allow different networks, each with its own
machines and administrative boundaries, to be connected to each
other.36 Although there is a common heritage—in the form of J. C. R.
Licklider—which ties the imagination of the time-sharing operat-

139sharing source code

ing system to the creation of the “galactic network,” the Arpanet
initially developed completely independent of UNIX.37 As a time-
sharing operating system, UNIX was meant to allow the sharing of
resources on a single computer, whether mainframe or minicom-
puter, but it was not initially intended to be connected to a network
of other computers running UNIX, as is the case today.38 The goal
of Arpanet, by contrast, was explicitly to achieve the sharing of
resources located on diverse machines across diverse networks.

To achieve the benefits of TCP/IP, the resources needed to be
implemented in all of the different operating systems that were con-
nected to the Arpanet—whatever operating system and machine
happened to be in use at each of the nodes. However, by 1977, the
original machines used on the network were outdated and increas-
ingly difficult to maintain and, according to Kirk McKusick, the
greatest expense was that of porting the old protocol software to
new machines. Hence, IPTO decided to pursue in part a strategy
of achieving coordination at the operating-system level, and they
chose UNIX as one of the core platforms on which to standardize.
In short, they had seen the light of portability. In about 1978 IPTO
granted a contract to Bolt, Beranek, and Newman (BBN), one of the
original Arpanet contractors, to integrate the TCP/IP protocols into
the UNIX operating system.

But then something odd happened, according to Salus: “An initial
prototype was done by BBN and given to Berkeley. Bill [Joy] im-
mediately started hacking on it because it would only run an Eth-
ernet at about 56K/sec utilizing 100% of the CPU on a 750. . . . Bill
lobotomized the code and increased its performance to on the order
of 700KB/sec. This caused some consternation with BBN when they
came in with their ‘finished’ version, and Bill wouldn’t accept it.
There were battles for years after, about which version would be in
the system. The Berkeley version ultimately won.”39

Although it is not clear, it appears BBN intended to give Joy
the code in order to include it in his BSD version of UNIX for dis-
tribution, and that Joy and collaborators intended to cooperate
with Rob Gurwitz of BBN on a final implementation, but Berkeley
insisted on “improving” the code to make it perform more to their
needs, and BBN apparently dissented from this.40 One result of this
scuffle between BSD and BBN was a genuine fork: two bodies of
code that did the same thing, competing with each other to become
the standard UNIX implementation of TCP/IP. Here, then, was a

140 sharing source code

case of sharing source code that led to the creation of different ver-
sions of software—sharing without collaboration. Some sites used
the BBN code, some used the Berkeley code.

Forking, however, does not imply permanent divergence, and the
continual improvement, porting, and sharing of software can have
odd consequences when forks occur. On the one hand, there are par-
ticular pieces of source code: they must be identifiable and exact, and
prepended with a copyright notice, as was the case of the Berkeley
code, which was famously and vigorously policed by the University
of California regents, who allowed for a very liberal distribution of
BSD code on the condition that the copyright notice was retained.
On the other hand, there are particular named collections of code
that work together (e.g., UNIX™, or DARPA-approved UNIX, or
later, Certified Open Source [sm]) and are often identified by a
trademark symbol intended, legally speaking, to differentiate prod-
ucts, not to assert ownership of particular instances of a product.

The odd consequence is this: Bill Joy’s specific TCP/IP code was
incorporated not only into BSD UNIX, but also into other versions
of UNIX, including the UNIX distributed by AT&T (which had origi-
nally licensed UNIX to Berkeley) with the Berkeley copyright notice
removed. This bizarre, tangled bank of licenses and code resulted
in a famous suit and countersuit between AT&T and Berkeley, in
which the intricacies of this situation were sorted out.41 An innocent
bystander, expecting UNIX to be a single thing, might be surprised
to find that it takes different forms for reasons that are all but
impossible to identify, but the cause of which is clear: different ver-
sions of sharing in conflict with one another; different moral and
technical imaginations of order that result in complex entangle-
ments of value and code.

The BSD fork of UNIX (and the subfork of TCP/IP) was only one
of many to come. By the early 1980s, a proliferation of UNIX forks
had emerged and would be followed shortly by a very robust com-
mercialization. At the same time, the circulation of source code
started to slow, as corporations began to compete by adding fea-
tures and creating hardware specifically designed to run UNIX
(such as the Sun Sparc workstation and the Solaris operating sys-
tem, the result of Joy’s commercialization of BSD in the 1980s). The
question of how to make all of these versions work together eventu-
ally became the subject of the open-systems discussions that would
dominate the workstation and networking sectors of the computer

141sharing source code

market from the early 1980s to 1993, when the dual success of Win-
dows NT and the arrival of the Internet into public consciousness
changed the fortunes of the UNIX industry.

A second, and more important, effect of the struggle between
BBN and BSD was simply the widespread adoption of the TCP/
IP protocols. An estimated 98 percent of computer-science depart-
ments in the United States and many such departments around the
world incorporated the TCP/IP protocols into their UNIX systems
and gained instant access to Arpanet.42 The fact that this occurred
when it did is important: a few years later, during the era of the
commercialization of UNIX, these protocols might very well not
have been widely implemented (or more likely implemented in in-
compatible, nonstandard forms) by manufacturers, whereas before
1983, university computer scientists saw every benefit in doing so
if it meant they could easily connect to the largest single computer
network on the planet. The large, already functioning, relatively
standard implementation of TCP/IP on UNIX (and the ability to
look at the source code) gave these protocols a tremendous advan-
tage in terms of their survival and success as the basis of a global
and singular network.

Conclusion

The UNIX operating system is not just a technical achievement; it is
the creation of a set of norms for sharing source code in an unusual
environment: quasi-commercial, quasi-academic, networked, and
planetwide. Sharing UNIX source code has taken three basic forms:
porting source code (transferring it from one machine to another);
teaching source code, or “porting” it to students in a pedagogical
setting where the use of an actual working operating system vastly
facilitates the teaching of theory and concepts; and forking source
code (modifying the existing source code to do something new or
different). This play of proliferation and differentiation is essential
to the remarkably stable identity of UNIX, but that identity exists
in multiple forms: technical (as a functioning, self-compatible op-
erating system), legal (as a license-circumscribed version subject to
intellectual property and commercial law), and pedagogical (as a
conceptual exemplar, the paradigm of an operating system). Source
code shared in this manner is essentially unlike any other kind of

142 sharing source code

source code in the world of computers, whether academic or com-
mercial. It raises troubling questions about standardization, about
control and audit, and about legitimacy that haunts not only UNIX
but the Internet and its various “open” protocols as well.

Sharing source code in Free Software looks the way it does today
because of UNIX. But UNIX looks the way it does not because of
the inventive genius of Thompson and Ritchie, or the marketing
and management brilliance of AT&T, but because sharing produces
its own kind of order: operating systems and social systems. The fact
that geeks are wont to speak of “the UNIX philosophy” means that
UNIX is not just an operating system but a way of organizing the
complex relations of life and work through technical means; a way
of charting and breaching the boundaries between the academic,
the aesthetic, and the commercial; a way of implementing ideas of
a moral and technical order. What’s more, as source code comes to
include more and more of the activities of everyday communica-
tion and creation—as it comes to replace writing and supplement
thinking—the genealogy of its portability and the history of its
forking will illuminate the kinds of order emerging in practices
and technologies far removed from operating systems—but tied in-
timately to the UNIX philosophy.

Conceiving Open Systems

The great thing about standards is that there are
so many to choose from.1

Openness is an unruly concept. While free tends toward ambiguity
(free as in speech, or free as in beer?), open tends toward obfusca
tion. Everyone claims to be open, everyone has something to share,
everyone agrees that being open is the obvious thing to do—after all,
openness is the other half of “open source”—but for all its obvious
ness, being “open” is perhaps the most complex component of Free
Software. It is never quite clear whether being open is a means or an
end. Worse, the opposite of open in this case (specifically, “open sys
tems”) is not closed, but “proprietary”—signaling the complicated
imbrication of the technical, the legal, and the commercial.

In this chapter I tell the story of the contest over the meaning
of “open systems” from 1980 to 1993, a contest to create a simul
taneously moral and technical infrastructure within the computer

5.

144 conceiving open systems

industry.2 The infrastructure in question includes technical
components—the UNIX operating system and the TCP/IP proto
cols of the Internet as open systems—but it also includes “moral”
components, including the demand for structures of fair and open
competition, antimonopoly and open markets, and openstandards
processes for hightech networked computers and software in the
1980s.3 By moral, I mean imaginations of the proper order of collec
tive political and commercial action; referring to much more than
simply how individuals should act, moral signifies a vision of how
economy and society should be ordered collectively.

The opensystems story is also a story of the blind spot of open
systems—in that blind spot is intellectual property. The story re
veals a tension between incompatible moraltechnical orders: on
the one hand, the promise of multiple manufacturers and corpora
tions creating interoperable components and selling them in an
open, heterogeneous market; on the other, an intellectualproperty
system that encouraged jealous guarding and secrecy, and granted
monopoly status to source code, designs, and ideas in order to dif
ferentiate products and promote competition. The tension proved
irresolvable: without shared source code, for instance, interoperable
operating systems are impossible. Without interoperable operating
systems, internetworking and portable applications are impossible.
Without portable applications that can run on any system, open
markets are impossible. Without open markets, monopoly power
reigns.

Standardization was at the heart of the contest, but by whom and
by what means was never resolved. The dream of open systems, pur
sued in an entirely unregulated industry, resulted in a complicated
experiment in novel forms of standardization and cooperation. The
creation of a “standard” operating system based on UNIX is the
story of a failure, a kind of “figuring out” gone haywire, which
resulted in huge consortia of computer manufacturers attempting
to work together and compete with each other at the same time.
Meanwhile, the successful creation of a “standard” networking
protocol—known as the Open Systems Interconnection Reference
Model (OSI)—is a story of failure that hides a larger success; OSI
was eclipsed in the same period by the rapid and ad hoc adoption
of the Transmission Control Protocol/Internet Protocol (TCP/IP),
which used a radically different standardization process and which
succeeded for a number of surprising reasons, allowing the Internet

145conceiving open systems

to take the form it did in the 1990s and ultimately exemplifying the
moraltechnical imaginary of a recursive public—and one at the
heart of the practices of Free Software.

The conceiving of openness, which is the central plot of these two
stories, has become an essential component of the contemporary
practice and power of Free Software. These early battles created a
kind of widespread readiness for Free Software in the 1990s, a rec
ognition of Free Software as a removal of open systems’ blind spot,
as much as an exploitation of its power. The geek ideal of openness
and a moraltechnical order (the one that made Napster so sig
nificant an event) was forged in the era of open systems; without
this concrete historical conception of how to maintain openness
in technical and moral terms, the recursive public of geeks would
be just another hierarchical closed organization—a corporation
manqué—and not an independent public serving as a check on
the kinds of destructive power that dominated the opensystems
contest.

Hopelessly Plural

Big iron, silos, legacy systems, turnkey systems, dinosaurs, main
frames: with the benefit of hindsight, the computer industry of the
1960s to the 1980s appears to be backward and closed, to have
literally painted itself into a corner, as an early Intel advertisement
suggests (figure 3). Contemporary observers who show disgust and
impatience with the form that computers took in this era are with
out fail supporters of open systems and opponents of proprietary
systems that “lock in” customers to specific vendors and create ar
tificial demands for support, integration, and management of re
sources. Open systems (were it allowed to flourish) would solve all
these problems.

Given the promise of a “generalpurpose computer,” it should
seem ironic at best that open systems needed to be created. But
the generalpurpose computer never came into being. We do not
live in the world of The Computer, but in a world of computers:
myriad, incompatible, specific machines. The design of specialized
machines (or “architectures”) was, and still is, key to a competi
tive industry in computers. It required CPUs and components and
associated software that could be clearly qualified and marketed

3. Open systems is the solution to painting yourself into a corner. Intel
advertisement, Wall Street Journal, 30 May 1984.

147conceiving open systems

as distinct products: the DEC PDP11 or the IBM 360 or the CDC
6600. On the Fordist model of automobile production, the computer
industry’s mission was to render desired functions (scientific calcu
lation, bookkeeping, reservations management) in a large box with
a button on it (or a very large number of buttons on increasingly
smaller boxes). Despite the theoretical possibility, such computers
were not designed to do anything, but, rather, to do specific kinds
of calculations exceedingly well. They were objects customized to
particular markets.

The marketing strategy was therefore extremely stable from
about 1955 to about 1980: identify customers with computing
needs, build a computer to serve them, provide them with all of the
equipment, software, support, or peripherals they need to do the
job—and charge a large amount. Organizationally speaking, it was
an industry dominated by “IBM and the seven dwarfs”: Hewlett
Packard, Honeywell, Control Data, General Electric, NCR, RCA,
Univac, and Burroughs, with a few upstarts like DEC in the wings.

By the 1980s, however, a certain inversion had happened. Com
puters had become smaller and faster; there were more and more
of them, and it was becoming increasingly clear to the “big iron”
manufacturers that what was most valuable to users was the in
formation they generated, not the machines that did the generat
ing. Such a realization, so the story goes, leads to a demand for
interchangeability, interoperability, information sharing, and net
working. It also presents the nightmarish problems of conversion
between a bewildering, heterogeneous, and rapidly growing array
of hardware, software, protocols, and systems. As one conference
paper on the subject of evaluating open systems put it, “At some
point a large enterprise will look around and see a huge amount
of equipment and software that will not work together. Most im
portantly, the information stored on these diverse platforms is not
being shared, leading to unnecessary duplication and lost profit.”4

Open systems emerged in the 1980s as the name of the solution
to this problem: an approach to the design of systems that, if all
participants were to adopt it, would lead to widely interoperable,
integrated machines that could send, store, process, and receive
the user’s information. In marketing and publicrelations terms, it
would provide “seamless integration.”

In theory, open systems was simply a question of standards adop
tion. For instance, if all the manufacturers of UNIX systems could

148 conceiving open systems

be convinced to adopt the same basic standard for the operating
system, then seamless integration would naturally follow as all the
various applications could be written once to run on any variant
UNIX system, regardless of which company made it. In reality, such
a standard was far from obvious, difficult to create, and even more
difficult to enforce. As such, the meaning of open systems was “hope
lessly plural,” and the term came to mean an incredibly diverse
array of things.

“Openness” is precisely the kind of concept that wavers between
end and means. Is openness good in itself, or is openness a means
to achieve something else—and if so what? Who wants to achieve
openness, and for what purpose? Is openness a goal? Or is it a means
by which a different goal—say, “interoperability” or “integration”—
is achieved? Whose goals are these, and who sets them? Are the
goals of corporations different from or at odds with the goals of uni
versity researchers or government officials? Are there large central
visions to which the activities of all are ultimately subordinate?

Between 1980 and 1993, no person or company or computer in
dustry consortium explicitly set openness as the goal that organiza
tions, corporations, or programmers should aim at, but, by the same
token, hardly anyone dissented from the demand for openness. As
such, it appears clearly as a kind of cultural imperative, reflecting
a longstanding social imaginary with roots in liberal democratic
notions, versions of a free market and ideals of the free exchange
of knowledge, but confronting changed technical conditions that
bring the moral ideas of order into relief, and into question.

In the 1980s everyone seemed to want some kind of openness,
whether among manufacturers or customers, from General Motors
to the armed forces.5 The debates, both rhetorical and technical,
about the meaning of open systems have produced a slough of
writings, largely directed at corporate IT managers and CIOs. For
instance, Terry A. Critchley and K. C. Batty, the authors of Open
Systems: The Reality (1993), claim to have collected over a hundred
definitions of open systems. The definitions stress different aspects—
from interoperability of heterogeneous machines, to compatibility
of different applications, to portability of operating systems, to
legitimate standards with open-interface definitions—including
those that privilege ideologies of a free market, as does Bill Gates’s
definition: “There’s nothing more open than the PC market. . . .
[U]sers can choose the latest and greatest software.” The range

149conceiving open systems

of meanings was huge and oriented along multiple axes: what, to
whom, how, and so on. Open systems could mean that source code
was open to view or that only the specifications or interfaces were;
it could mean “available to certain third parties” or “available to
everyone, including competitors”; it could mean selfpublishing,
well-defined interfaces and application programming interfaces
(APIs), or it could mean sticking to standards set by governments
and professional societies. To cynics, it simply meant that the mar
keting department liked the word open and used it a lot.

One part of the definition, however, was both consistent and ex
tremely important: the opposite of an “open system” was not a
“closed system” but a “proprietary system.” In industries other than
networking and computing the word proprietary will most likely
have a positive valence, as in “our exclusive proprietary technol
ogy.” But in the context of computers and networks such a usage
became anathema in the 1980s and 1990s; what customers report
edly wanted was a system that worked nicely with other systems,
and that system had to be by definition open since no single com
pany could provide all of the possible needs of a modern business
or government agency. And even if it could, it shouldn’t be allowed
to. For instance, “In the beginning was the word and the word
was ‘proprietary.’ IBM showed the way, purveying machines that
existed in splendid isolation. They could not be operated using pro
grams written for any other computer; they could not communicate
with the machines of competitors. If your company started out buy
ing computers of various sizes from the International Business Ma
chines Corporation because it was the biggest and best, you soon
found yourself locked as securely to Big Blue as a manacled wretch
in a medieval dungeon. When an IBM rival unveiled a technologi
cally advanced product, you could only sigh; it might be years be
fore the new technology showed up in the IBM line.”6

With the exception of IBM (and to some extent its closest com
petitors: HewlettPackard, Burroughs, and Unisys), computer cor
porations in the 1980s sought to distance themselves from such
“medieval” proprietary solutions (such talk also echoes that of us
able pasts of the Protestant Reformation often used by geeks). New
firms like Sun and Apollo deliberately berated the IBM model. Bill
Joy reportedly called one of IBM’s new releases in the 1980s a
“grazing dinosaur ‘with a truck outside pumping its bodily fluids
through it.’ ”7

150 conceiving open systems

Open systems was never a simple solution though: all that com
plexity in hardware, software, components, and peripherals could
only be solved by pushing hard for standards—even for a single
standard. Or, to put it differently, during the 1980s, everyone
agreed that open systems was a great idea, but no one agreed on
which open systems. As one of the anonymous speakers in Open Sys-
tems: The Reality puts it, “It took me a long time to understand what
(the industry) meant by open vs. proprietary, but I finally figured
it out. From the perspective of any one supplier, open meant ‘our
products.’ Proprietary meant ‘everyone else’s products.’ ”8

For most supporters of open systems, the opposition between open
and proprietary had a certain moral force: it indicated that corpo
rations providing the latter were dangerously close to being evil,
immoral, perhaps even criminal monopolists. Adrian Gropper and
Sean Doyle, the principals in Amicas, an Internet teleradiology
company, for instance, routinely referred to the large proprietary
healthcareinformation systems they confronted in these terms:
open systems are the way of light, not dark. Although there are
no doubt arguments for closed systems—security, privacy, robust
ness, control—the demand for interoperability does not mean that
such closure will be sacrificed.9 Closure was also a choice. That is,
open systems was an issue of sovereignty, involving the right, in
a moral sense, of a customer to control a technical order hemmed
in by firm standards that allowed customers to combine a number
of different pieces of hardware and software purchased in an open
market and to control the configuration themselves—not enforced
openness, but the right to decide oneself on whether and how to be
open or closed.

The open-systems idea of moral order conflicts, however, with an
idea of moral order represented by intellectual property: the right,
encoded in law, to assert ownership over and control particular
bits of source code, software, and hardware. The call for and the
market in open systems were never imagined as being opposed to
intellectual property as such, even if the opposition between open
and proprietary seemed to indicate a kind of subterranean recogni
tion of the role of intellectual property. The issue was never explic
itly broached. Of the hundred definitions in Open Systems, only one
definition comes close to including legal issues: “Speaker at Interop
’90 (paraphrased and maybe apocryphal): ‘If you ask to gain access
to a technology and the response you get back is a price list, then

151conceiving open systems

that technology is “open.” If what you get back is a letter from a
lawyer, then it’s not “open.” ’ ”10

Openness here is not equated with freedom to copy and modify,
but with the freedom to buy access to any aspect of a system with
out signing a contract, a nondisclosure agreement, or any other
legal document besides a check. The ground rules of competition
are unchallenged: the existing system of intellectual property—a
system that was expanded and strengthened in this period—was a
sine qua non of competition.

Openness understood in this manner means an open market in
which it is possible to buy standardized things which are neither
obscure nor secret, but can be examined and judged—a “commod
ity” market, where products have functions, where quality is com
parable and forms the basis for vigorous competition. What this
notion implies is freedom from monopoly control by corporations over
products, a freedom that is nearly impossible to maintain when
the entire industry is structured around the monopoly control of
intellectual property through trade secret, patent, or copyright. The
blind spot hides the contradiction between an industry imagined on
the model of manufacturing distinct and tangible products, and the
reality of an industry that wavers somewhere between service and
product, dealing in intangible intellectual property whose bound
aries and identity are in fact defined by how they are exchanged,
circulated, and shared, as in the case of the proliferation and dif
ferentiation of the UNIX operating system.

There was no disagreement about the necessity of intellectual
property in the computer industry of the 1980s, and there was no
perceived contradiction in the demands for openness. Indeed, open
ness could only make sense if it were built on top of a stable system
of intellectual property that allowed competitors to maintain clear
definitions of the boundaries of their products. But the creation of
interoperable components seemed to demand a relaxation of the se
crecy and guardedness necessary to “protect” intellectual property.
Indeed, for some observers, the problem of openness created the
opportunity for the worst kinds of cynical logic, as in this example
from Regis McKenna’s Who’s Afraid of Big Blue?

Users want open environments, so the vendors had better comply. In
fact, it is a good idea to support new standards early. That way, you
can help control the development of standards. Moreover, you can

152 conceiving open systems

take credit for driving the standard. Supporting standards is a way to
demonstrate that you’re on the side of users. On the other hand, com
panies cannot compete on the basis of standards alone. Companies
that live by standards can die by standards. Other companies, adher
ing to the same standards, could win on the basis of superior manufactur-
ing technology. If companies do nothing but adhere to standards, then
all computers will become commodities, and nobody will be able to
make any money. Thus, companies must keep something proprietary,
something to differentiate their products.11

By such an account, open systems would be tantamount to
economic regression, a state of pure competition on the basis of
manufacturing superiority, and not on the basis of the competitive
advantage granted by the monopoly of intellectual property, the
clear hallmark of a hightech industry.12 It was an irresolvable ten
sion between the desire for a cooperative, marketbased infrastruc
ture and the structure of an intellectualproperty system illsuited
to the technical realities within which companies and customers
operated—a tension revealing the reorientation of knowledge and
power with respect to creation, dissemination, and modification of
knowledge.

From the perspective of intellectual property, ideas, designs, and
source code are everything—if a company were to release the source
code, and allow other vendors to build on it, then what exactly
would they be left to sell? Open systems did not mean anything
like free, opensource, or publicdomain computing. But the fact
that competition required some form of collaboration was obvious
as well: standard software and network systems were needed; stan
dard markets were needed; standard norms of innovation within
the constraints of standards were needed. In short, the challenge
was not just the creation of competitive products but the creation
of a standard infrastructure, dealing with the technical questions of
availability, modifiability, and reusability of components, and the
moral questions of the proper organization of competition and col
laboration across diverse domains: engineers, academics, the com
puter industry, and the industries it computerized. What follows
is the story of how UNIX entered the opensystems fray, a story
in which the tension between the conceiving of openness and the
demands of intellectual property is revealed.

153conceiving open systems

Open Systems One: Operating Systems

In 1980 UNIX was by all accounts the most obvious choice for a
standard operating system for a reason that seemed simple at the
outset: it ran on more than one kind of hardware. It had been in
stalled on DEC machines and IBM machines and Intel processors
and Motorola processors—a fact exciting to many professional pro
grammers, university computer scientists, and system administra
tors, many of whom also considered UNIX to be the best designed
of the available operating systems.

There was a problem, however (there always is): UNIX belonged
to AT&T, and AT&T had licensed it to multiple manufacturers over
the years, in addition to allowing the source code to circulate more
or less with abandon throughout the world and to be ported to a
wide variety of different machine architectures. Such proliferation,
albeit haphazard, was a dream come true: a single, interoperable
operating system running on all kinds of hardware. Unfortunately,
proliferation would also undo that dream, because it meant that as
the markets for workstations and operating systems heated up, the
existing versions of UNIX hardened into distinct and incompatible
versions with different features and interfaces. By the mid 1980s,
there were multiple competing efforts to standardize UNIX, an en
deavour that eventually went haywire, resulting in the socalled
UNIX wars, in which “gangs” of vendors (some on both sides of
the battle) teamed up to promote competing standards. The story
of how this happened is instructive, for it is a story that has been
reiterated several times in the computer industry.13

As a hybrid commercialacademic system, UNIX never entered the
market as a single thing. It was licensed in various ways to different
people, both academic and commercial, and contained additions
and tools and other features that may or may not have originated
at (or been returned to) Bell Labs. By the early 1980s, the Berkeley
Software Distribution was in fact competing with the AT&T ver
sion, even though BSD was a sublicensee—and it was not the only
one. By the late 1970s and early 1980s, a number of corporations
had licensed UNIX from AT&T for use on new machines. Micro
soft licensed it (and called it Xenix, rather than licensing the name
UNIX as well) to be installed on Intelbased machines. IBM, Uni
sys, Amdahl, Sun, DEC, and HewlettPackard all followed suit and

154 conceiving open systems

created their own versions and names: HPUX, A/UX, AIX, Ultrix,
and so on. Given the ground rules of trade secrecy and intellectual
property, each of these licensed versions needed to be made legally
distinct—if they were to compete with each other. Even if “UNIX”
remained conceptually pure in an academic or pedagogical sense,
every manufacturer would nonetheless have to tweak, to extend,
to optimize in order to differentiate. After all, “if companies do
nothing but adhere to standards, then all computers will become
commodities, and nobody will be able to make any money.”14

It was thus unlikely that any of these corporations would con
tribute the changes they made to UNIX back into a common pool,
and certainly not back to AT&T which subsequent to the 1984 di
vestiture finally released their own commercial version of UNIX,
called UNIX System V. Very quickly, the promising “open” UNIX
of the 1970s became a slough of alternative operating systems,
each incompatible with the next thanks to the addition of market
differentiating features and hardware-specific tweaks. According
to Pamela Gray, “By the mid1980s, there were more than 100
versions in active use” centered around the three market leaders,
AT&T’s System V, Microsoft/SCO Xenix, and the BSD.15 By 1984,
the differences in systems had become significant—as in the case
of the BSD additions of the TCP/IP protocols, the vi editor, and the
Pascal compiler—and created not only differentiation in terms of
quality but also incompatibility at both the software and network
ing levels.

Different systems of course had different user communities, based
on who was the customer of whom. Eric Raymond suggests that
in the mid1980s, independent hackers, programmers, and com
puter scientists largely followed the fortunes of BSD: “The divide
was roughly between longhairs and shorthairs; programmers and
technical people tended to line up with Berkeley and BSD, more
businessoriented types with AT&T and System V. The longhairs,
repeating a theme from Unix’s early days ten years before, liked
to see themselves as rebels against a corporate empire; one of the
small companies put out a poster showing an Xwinglike space
fighter marked “BSD” speeding away from a huge AT&T ‘death
star’ logo left broken and in flames.”16

So even though UNIX had become the standard operating system
of choice for timesharing, multiuser, highperformance computers
by the mid1980s, there was no such thing as UNIX. Competitors

155conceiving open systems

in the UNIX market could hardly expect the owner of the system,
AT&T, to standardize it and compete with them at the same time,
and the rest of the systems were in some legal sense still derivations
from the original AT&T system. Indeed, in its licensing pamphlets,
AT&T even insisted that UNIX was not a noun, but an adjective, as
in “the UNIX system.”17

The dawning realization that the proliferation of systems was not
only spreading UNIX around the world but also spreading it thin
and breaking it apart led to a series of increasingly startling and
high-profile attempts to “standardize” UNIX. Given that the three
major branches (BSD, which would become the industry darling as
Sun’s Solaris operating system; Microsoft, and later SCO Xenix; and
AT&T’s System V) all emerged from the same AT&T and Berkeley
work done largely by Thompson, Ritchie, and Joy, one would think
that standardization would be a snap. It was anything but.

Figuring Out Goes Haywire

Figuring out the moral and technical order of open systems went
haywire around 1986–88, when there were no fewer than four com
peting international standards, represented by huge consortia of
computer manufacturers (many of whom belonged to multiple con
sortia): POSIX, the X/Open consortium, the Open Software Foun
dation, and UNIX International. The blind spot of open systems
had much to do with this crazy outcome: academics, industry, and
government could not find ways to agree on standardization. One
goal of standardization was to afford customers choice; another
was to allow competition unconstrained by “artificial” means.
A standard body of source code was impossible; a standard “in
terface definition” was open to too much interpretation; govern
ment and academic standards were too complex and expensive; no
particular corporation’s standard could be trusted (because they
could not be trusted to reveal it in advance of their own innova
tions); and worst of all, customers kept buying, and vendors kept
shipping, and the world was increasingly filled with diversity, not
standardization.

UNIX proliferated quickly because of porting, leading to multiple
instances of an operating system with substantially similar source
code shared by academics and licensed by AT&T. But it differentiated

156 conceiving open systems

just as quickly because of forking, as particular features were added
to different ports. Some features were reincorporated into the “main”
branch—the one Thompson and Ritchie worked on—but the bulk
of these mutations spread in a haphazard way, shared through us
ers directly or implemented in newly formed commercial versions.
Some features were just that, features, but others could extend the
system in ways that might make an application possible on one ver
sion, but not on another.

The proliferation and differentiation of UNIX, the operating sys
tem, had peculiar effects on the emerging market for UNIX, the
product: technical issues entailed design and organizational issues.
The original UNIX looked the way it did because of the very pecu
liar structure of the organization that created and sustained UNIX:
Bell Labs and the worldwide community of users and developers.
The newly formed competitors, conceiving of UNIX as a product
distinct from the original UNIX, adopted it precisely because of
its portability and because of the promise of open systems as an
alternative to “big iron” mainframes. But as UNIX was funneled
into existing corporations with their own design and organizational
structures, it started to become incompatible with itself, and the
desire for competition in open systems necessitated efforts at UNIX
standardization.

The first step in the standardization of open systems and UNIX
was the creation of what was called an “interface definition,” a
standard that enumerated the minimum set of functions that any
version of UNIX should support at the interface level, meaning that
any programmer who wrote an application could expect to interact
with any version of UNIX on any machine in the same way and
get the same response from the machine (regardless of the specific
implementation of the operating system or the source code that was
used). Interface definitions, and extensions to them, were ideally to
be published and freely available.

The interface definition was a standard that emphasized portabil
ity, not at the sourcecode or operatingsystem level, but at the ap
plication level, allowing applications built on any version of UNIX
to be installed and run on any other. The push for such a standard
came first from a UNIX user group founded in 1980 by Bob Marsh
and called, after the convention of file hierarchies in the UNIX
interface, “/usr/group” (later renamed Uniforum). The 1984 /usr/
group standard defined a set of system calls, which, however, “was

157conceiving open systems

immediately ignored and, for all practical purposes, useless.”18 It
seemed the field was changing too fast and UNIX proliferating and
innovating too widely for such a standard to work.

The /usr/group standard nevertheless provided a starting point
for more traditional standards organizations—the Institute of Elec
trical and Electronics Engineers (IEEE) and the American National
Standards Institute (ANSI)—to take on the task. Both institutions
took the /usr/group standard as a basis for what would be called
IEEE P1003 Portable Operating System Interface for Computer En
vironments (POSIX). Over the next three years, from 1984 to 1987,
POSIX would work diligently at providing a standard interface
definition for UNIX.

Alongside this development, the AT&T version of UNIX became
the basis for a different standard, the System V Interface Definition
(SVID), which attempted to standardize a set of functions similar but
not identical to the /usr/group and POSIX standards. Thus emerged
two competing definitions for a standard interface to a system that
was rapidly proliferating into hundreds of tiny operatingsystem
fiefdoms.19 The danger of AT&T setting the standard was not lost
on any of the competing manufacturers. Even if they created a thor
oughly open standard-interface definition, AT&T’s version of UNIX
would be the first to implement it, and they would continually have
privileged knowledge of any changes: if they sought to change the
implementation, they could change the standard; if they received
demands that the standard be changed, they could change their
implementation before releasing the new standard.

In response to this threat, a third entrant into the standards race
emerged: X/Open, which comprised a variety of European com
puter manufacturers (including AT&T!) and sought to develop a
standard that encompassed both SVID and POSIX. The X/Open ini
tiative grew out of European concern about the dominance of IBM
and originally included Bull, Ericsson, ICL, Nixdorf, Olivetti, Phil
ips, and Siemens. In keeping with a certain 1980s taste for the in
tegration of European economic activity visàvis the United States
and Japan, these manufacturers banded together both to distribute
a unified UNIX operating system in Europe (based initially on the
BSD and Sun versions of UNIX) and to attempt to standardize it at
the same time.

X/Open represented a subtle transformation of standardization
efforts and of the organizational definition of open systems. While

158 conceiving open systems

the /usr/group standard was developed by individuals who used
UNIX, and the POSIX standard by an acknowledged professional
society (IEEE), the X/Open group was a collective of computer cor
porations that had banded together to fund an independent entity
to help further the cause of a standard UNIX. This paradoxical
situation—of a need to share a standard among all the competitors
and the need to keep the details of that standardized product secret to
maintain an advantage—was one that many manufacturers, espe
cially the Europeans with their long experience of IBM’s monopoly,
understood as mutually destructive. Hence, the solution was to en
gage in a kind of organizational innovation, to create a new form
of metacorporate structure that could strategically position itself
as at least temporarily interested in collaboration with other firms,
rather than in competition. Thus did stories and promises of open
systems wend their way from the details of technical design to those
of organizational design to the moral order of competition and
collaboration, power and strategy. “Standards” became products
that corporations sought to “sell” to their own industry through the
intermediary of the consortium.

In 1985 and 1986 the disarrayed state of UNIX was also frus
trating to the major U.S. manufacturers, especially to Sun Micro
systems, which had been founded on the creation of a market for
UNIXbased “workstations,” highpowered networked computers
that could compete with mainframes and personal computers at
the same time. Founded by Bill Joy, Vinod Khosla, and Andreas
Bechtolsheim, Sun had very quickly become an extraordinarily
successful computer company. The business pages and magazines
were keen to understand whether workstations were viable com
petitors to PCs, in particular to those of IBM and Microsoft, and
the de facto standard DOS operating system, for which a variety
of extremely successful business, personal, and homecomputer
applications were written.

Sun seized on the anxiety around open systems, as is evident in
the ad it ran during the summer of 1987 (figure 4). The ad plays
subtly on two anxieties: the first is directed at the consumer and sug
gests that only with Sun can one actually achieve interoperability
among all of one business’ computers, much less across a network
or industry; the second is more subtle and plays to fears within the
computer industry itself, the anxiety that Sun might merge with one

159conceiving open systems

of the big corporations, AT&T or Unisys, and corner the market in
open systems by producing the de facto standard.

In fact, in October 1987 Sun announced that it had made a deal
with AT&T. AT&T would distribute a workstation based on Sun’s
SPARC line of workstations and would acquire 20 percent of Sun.20
As part of this announcement, Sun and AT&T made clear that they
intended to merge two of the dominant versions of UNIX on the
market: AT&T’s System V and the BSDderived Solaris. This move
clearly frightened the rest of the manufacturers interested in UNIX
and open systems, as it suggested a kind of superpower alignment
that would restructure (and potentially dominate) the market. A
1988 article in the New York Times quotes an industry analyst who
characterizes the merger as “a matter of concern at the highest
levels of every major computer company in the United States, and
possibly the world,” and it suggests that competing manufacturers
“also fear that AT&T will gradually make Unix a proprietary prod
uct, usable only on AT&T or Sun machines.”21 The industry anxiety
was great enough that in March Unisys (a computer manufacturer,
formerly BurroughsSperry) announced that it would work with
AT&T and Sun to bring UNIX to its mainframes and to make its

4a and 4b. Open systems anxiety around mergers and compatibility. Sun
Microsystems advertisement, Wall Street Journal, 9 July 1987.

160 conceiving open systems

business applications run on UNIX. Such a move was tantamount
to Unisys admitting that there would be no future in proprietary
highend computing—the business on which it had hitherto built
its reputation—unless it could be part of the consortium that could
own the standard.22

In response to this perceived collusion a group of U.S. and European
companies banded together to form another rival organization—
one that partially overlapped with X/Open but now included
IBM—this one called the Open Software Foundation. A nonprofit
corporation, the foundation included IBM, Digital Equipment,
HewlettPackard, Bull, Nixdorf, Siemens, and Apollo Computer
(Sun’s most direct competitor in the workstation market). Their
goal was explicitly to create a “competing standard” for UNIX
that would be available on the hardware they manufactured (and
based, according to some newspaper reports, on IBM’s AIX, which
was to be called OSF/1). AT&T appeared at first to support the
foundation, suggesting that if the Open Software Foundation could
come up with a standard, then AT&T would make System V com
patible with it. Thus, 1988 was the summer of open love. Every
major computer manufacturer in the world was now part of some
consortium or another, and some were part of two—each promot
ing a separate standard.

Of all the corporations, Sun did the most to brand itself as the
originator of the opensystems concept. They made very broad
claims for the success of opensystems standardization, as for in
stance in an ad from August 1988 (figure 5), which stated in part:

But what’s more, those sales confirm a broad acceptance of the whole
idea behind Sun.

The Open Systems idea.
Systems based on standards so universally accepted that they allow

combinations of hardware and software from literally thousands of
independent vendors. . . .

So for the first time, you’re no longer locked into the company who
made your computers. Even if it’s us.

The ad goes on to suggest that “in a free market, the best products
win out,” even as Sun played both sides of every standardization
battle, cooperating with both AT&T and with the Open Software
Foundation. But by October of that year, it was clear to Sun that

5. It pays to be open: Sun’s version of profitable and successful open
systems. Sun Microsystems advertisement, New York Times, 2 August
1988.

162 conceiving open systems

the idea hadn’t really become “so universal” just yet. In that month
AT&T and Sun banded together with seventeen other manufactur
ers and formed a rival consortium: Unix International, a coalition
of the willing that would back the AT&T UNIX System V version
as the one true open standard. In a fullpage advertisement from
Halloween of 1988 (figure 6), run simultaneously in the New York
Times, the Washington Post, and the Wall Street Journal, the rhetoric
of achieved success remained, but now instead of “the Open Sys
tems idea,” it was “your demand for UNIX System Vbased solu
tions that ushered in the era of open architecture.” Instead of a
standard for all open systems, it was a war of all against all, a war
to assure customers that they had made, not the right choice of
hardware or software, but the right choice of standard.

The proliferation of standards and standards consortia is often
referred to as the UNIX wars of the late 1980s, but the creation of
such consortia did not indicate clearly drawn lines. Another meta
phor that seems to have been very popular in the press at the time
was that of “gang” warfare (no doubt helped along by the creation
of another industry consortia informally called the Gang of Nine,
which were involved in a dispute over whether MicroChannel or
EISA buses should be installed in PCs). The idea of a number of
companies forming gangs to fight with each other, Bloods-and-Crips
style—or perhaps more JetsandSharks style, minus the singing
—was no doubt an appealing metaphor at the height of Los Ange
les’s very real and high-profile gang warfare. But as one article in
the New York Times pointed out, these were strange gangs: “Since
‘openness’ and ‘cooperation’ are the buzzwords behind these alli
ances, the gang often asks its enemy to join. Often the enemy does
so, either so that it will not seem to be opposed to openness or to
keep tabs on the group. IBM was invited to join the corporation
for Open Systems, even though the clear if unstated motive of the
group was to dilute IBM’s influence in the market. AT&T negotiated
to join the Open Software Foundation, but the talks collapsed re
cently. Some companies find it completely consistent to be members
of rival gangs. . . . About 10 companies are members of both the
Open Software Foundation and its archrival Unix International.”23

The proliferation of these consortia can be understood in various
ways. One could argue that they emerged at a time—during the
Reagan administration—when antitrust policing had diminished to

6. The UNIX Wars, Halloween 1988. UNIX International advertisement,
Wall Street Journal and New York Times, 31 October 1988.

164 conceiving open systems

the point where computer corporations did not see such collusion as
a risky activity visàvis antitrust policing. One could also argue that
these consortia represented a recognition that the focus on hard
ware control (the meaning of proprietary) had been replaced with a
focus on the control of the “open standard” by one or several manu
facturers, that is, that competition was no longer based on superior
products, but on “owning the standard.” It is significant that the in
dustry consortia quickly overwhelmed national efforts, such as the
IEEE POSIX standard, in the media, an indication that no one was
looking to government or nonprofits, or to university professional
societies, to settle the dispute by declaring a standard, but rather
to industry itself to hammer out a standard, de facto or otherwise.
Yet another way to understand the emergence of these consortia is
as a kind of mutual policing of the market, a kind of paranoid strat
egy of showing each other just enough to make sure that no one
would leapfrog ahead and kill the existing, fragile competition.

What this proliferation of UNIX standards and consortia most
clearly represents, however, is the blind spot of open systems: the
difficulty of having collaboration and competition at the same time
in the context of intellectualproperty rules that incompletely cap
ture the specific and unusual characteristics of software. For par
ticipants in this market, the structure of intellectual property was
unassailable—without it, most participants assumed, innovation
would cease and incentives disappear. Despite the fact that secrecy
haunted the industry, its customers sought both openness and com
patibility. These conflicting demands proved irresolvable.

Denouement

Ironically, the UNIX wars ended not with the emergence of a win
ner, but with the reassertion of proprietary computing: Microsoft
Windows and Windows NT. Rather than open systems emerging vic
torious, ushering in the era of seamless integration of diverse com
ponents, the reverse occurred: Microsoft managed to grab a huge
share of computer markets, both desktop and highperformance,
by leveraging its brand, the ubiquity of DOS, and application
software developers’ dependence on the “Wintel” monster (Win
dows plus Intel chips). Microsoft triumphed, largely for the same
reasons the opensystems dream failed: the legal structure of intel

165conceiving open systems

lectual property favored a strong corporate monopoly on a single,
branded product over a weak array of “open” and competing com
ponents. There was no large gain to investors, or to corporations,
from an industry of nice guys sharing the source code and making
the components work together. Microsoft, on the other hand, had
decided to do so internal to itself; it did not necessarily need to form
consortia or standardize its operating systems, if it could leverage
its dominance in the market to spread the operating system far and
wide. It was, as standards observers like to say, the triumph of de
facto standardization over de jure. It was a return to the manacled
wretches of IBM’s monopoly—but with a new dungeon master.

The denouement of the UNIX standards story was swift: AT&T
sold its UNIX System Labs (including all of the original source and
rights) to Novell in 1993, who sold it in turn to SCO two years later.
Novell sold (or transferred) the trademark name UNIX™ to the X/
Open group, which continued to fight for standardization, includ
ing a single universal UNIX specification. In 1996 X/Open and the
Open Software Foundation merged to form the Open Group.24 The
Open Group eventually joined forces with IEEE to turn POSIX into
a single UNIX specification in 2001. They continue to push the
original vision of open systems, though they carefully avoid using
the name or concept, referring instead to the trademarked mouth
ful “Boundaryless Information Flow” and employing an updated
and newly inscrutable rhetoric: “Boundaryless Information Flow,
a shorthand representation of ‘access to integrated information to
support business process improvements’ represents a desired state
of an enterprise’s infrastructure and is specific to the business needs
of the organization.”25

The Open Group, as well as many other participants in the his
tory of open systems, recognize the emergence of “open source” as
a return to the now one true path of boundaryless information flow.
Eric Raymond, of course, sees continuity and renewal (not least of
which in his own participation in the Open Source movement) and
in his Art of UNIX Programming says, “The Open Source movement
is building on this stable foundation and is creating a resurgence
of enthusiasm for the UNIX philosophy. In many ways Open Source
can be seen as the true delivery of Open Systems that will ensure it
continues to go from strength to strength.”26

This continuity, of course, deliberately disavows the centrality
of the legal component, just as Raymond and the Open Source

166 conceiving open systems

Initiative had in 1998. The distinction between a robust market in
UNIX operating systems and a standard UNIXbased infrastructure
on which other markets and other activities can take place still
remains unclear to even those closest to the money and machines.
It does not yet exist, and may well never come to.

The growth of Free Software in the 1980s and 1990s depended
on openness as a concept and component that was figured out dur
ing the UNIX wars. It was during these wars that the Free Software
Foundation (and other groups, in different ways) began to recog
nize the centrality of the issue of intellectual property to the goal
of creating an infrastructure for the successful creation of open
systems.27 The GNU (GNU’s Not Unix) project in particular, but
also the X Windows system at MIT, the Remote Procedure Call and
Network File System (NFS) systems created by Sun, and tools like
sendmail and BIND were each in their own way experiments with
alternative licensing arrangements and were circulating widely on
a variety of the UNIX versions in the late 1980s. Thus, the experi
ence of open systems, while technically a failure as far as UNIX was
concerned, was nonetheless a profound learning experience for an
entire generation of engineers, hackers, geeks, and entrepreneurs.
Just as the UNIX operating system had a pedagogic life of its own,
inculcating itself into the minds of engineers as the paradigm of an
operating system, open systems had much the same effect, realizing
an inchoate philosophy of openness, interconnection, compatibility,
interoperability—in short, availability and modifiability—that was in
conflict with intellectual-property structures as they existed. To put
it in Freudian terms: the neurosis of open systems wasn’t cured, but
the structure of its impossibility had become much clearer to ev
eryone. UNIX, the operating system, did not disappear at all—but
UNIX, the market, did.

Open Systems Two: Networks

The struggle to standardize UNIX as a platform for open systems
was not the only opensystems struggle; alongside the UNIX wars,
another “religious war” was raging. The attempt to standardize
networks—in particular, protocols for the internetworking of mul
tiple, diverse, and autonomous networks of computers—was also
a key aspect of the opensystems story of the 1980s.28 The war

167conceiving open systems

between the TCP/IP and OSI was also a story of failure and surpris
ing success: the story of a successful standard with international
approval (the OSI protocols) eclipsed by the experimental, military
funded TCP/IP, which exemplified an alternative and unusual stan
dards process. The moraltechnical orders expressed by OSI and
TCP/IP are, like that of UNIX, on the border between government,
university, and industry; they represent conflicting social imaginar
ies in which power and legitimacy are organized differently and, as
a result, expressed differently in the technology.

OSI and TCP/IP started with different goals: OSI was intended
to satisfy everyone, to be the complete and comprehensive model
against which all competing implementations would be validated;
TCP/IP, by contrast, emphasized the easy and robust intercon
nection of diverse networks. TCP/IP is a protocol developed by
bootstrapping between standard and implementation, a mode
exemplified by the Requests for Comments system that developed
alongside them as part of the Arpanet project. OSI was a “model”
or reference standard developed by internationally respected stan
dards organizations.

In the mid1980s OSI was en route to being adopted internation
ally, but by 1993 it had been almost completely eclipsed by TCP/IP.
The success of TCP/IP is significant for three reasons: (1) availability
—TCP/IP was itself available via the network and development
open to anyone, whereas OSI was a bureaucratically confined and
expensive standard and participation was confined to state and
corporate representatives, organized through ISO in Geneva; (2)
modifiability—TCP/IP could be copied from an existing implemen
tation (such as the BSD version of UNIX) and improved, whereas
OSI was a complex standard that had few existing implementations
available to copy; and (3) serendipity—new uses that took advan
tage of availability and modifiability sprouted, including the “killer
app” that was the World Wide Web, which was built to function on
existing TCP/IPbased networks, convincing many manufacturers
to implement that protocol instead of, or in addition to, OSI.

The success of TCP/IP over OSI was also significant because of
the difference in the standardization processes that it exemplified.
The OSI standard (like all official international standards) is con
ceived and published as an aid to industrial growth: it was imag
ined according to the ground rules of intellectual property and as
an attempt to facilitate the expansion of markets in networking.

168 conceiving open systems

OSI would be a “vendorneutral” standard: vendors would create
their own, secret implementations that could be validated by OSI
and thereby be expected to interoperate with other OSIvalidated
systems. By stark contrast, the TCP/IP protocols were not pub
lished (in any conventional sense), nor were the implementations
validated by a legitimate internationalstandards organization; in
stead, the protocols are themselves represented by implementations
that allow connection to the network itself (where the TCP/IP pro
tocols and implementations are themselves made available). The
fact that one can only join the network if one possesses or makes
an implementation of the protocol is generally seen as the ultimate
in validation: it works.29 In this sense, the struggle between TCP/IP
and OSI is indicative of a very familiar twentiethcentury struggle
over the role and extent of government planning and regulation
(versus entrepreneurial activity and individual freedom), perhaps
best represented by the twin figures of Friedrich Hayek and May
nard Keynes. In this story, it is Hayek’s aversion to planning and
the subsequent privileging of spontaneous order that eventually
triumphs, not Keynes’s paternalistic view of the government as a
neutral body that absorbs or encourages the swings of the market.

Bootstrapping Networks

The “religious war” between TCP/IP and OSI occurred in the context
of intense competition among computer manufacturers and during
a period of vibrant experimentation with computer networks world
wide. As with most developments in computing, IBM was one of the
first manufacturers to introduce a networking system for its ma
chines in the early 1970s: the System Network Architecture (SNA).
DEC followed suit with Digital Network Architecture (DECnet or
DNA), as did Univac with Distributed Communications Architecture
(DCA), Burroughs with Burroughs Network Architecture (BNA),
and others. These architectures were, like the proprietary operat
ing systems of the same era, considered closed networks, networks
that interconnected a centrally planned and specified number of
machines of the same type or made by the same manufacturer. The
goal of such networks was to make connections internal to a firm,
even if that involved geographically widespread systems (e.g., from
branch to headquarters). Networks were also to be products.

169conceiving open systems

The 1970s and 1980s saw extraordinarily vibrant experimenta
tion with academic, military, and commercial networks. Robert
Metcalfe had developed Ethernet at Xerox PARC in the mid1970s,
and IBM later created a similar technology called “token ring.”
In the 1980s the military discovered that the Arpanet was being
used predominantly by computer scientists and not just for military
applications, and decided to break it into MILNET and CSNET.30
Bulletin Board Services, which connected PCs to each other via
modems to download files, appeared in the late 1970s. Out of this
grew Tom Jennings’s very successful experiment called FidoNet.31
In the 1980s an existing social network of university faculty on
the East Coast of the United States started a relatively successful
network called BITNET (Because It’s There Network) in the mid
1980s.32 The Unix to Unix Copy Protocol (uucp), which initially
enabled the Usenet, was developed in the late 1970s and widely
used until the mid1980s to connect UNIX computers together. In
1984 the NSF began a program to fund research in networking
and created the first large backbones for NSFNet, successor to the
CSNET and Arpanet.33

In the 1970s telecommunications companies and spin-off start-
ups experimented widely with what were called “videotex” systems,
of which the most widely implemented and wellknown is Minitel
in France.34 Such systems were designed for consumer users and
often provided many of the now widespread services available on
the Internet in a kind of embryonic form (from comparison shop
ping for cars, to directory services, to pornography).35 By the late
1970s, videotex systems were in the process of being standardized
by the Commité Consultative de Information, Technologie et Télé
communications (CCITT) at the International Telecommunications
Union (ITU) in Geneva. These standards efforts would eventually
be combined with work of the International Organization for Stan
dardization (ISO) on OSI, which had originated from work done at
Honeywell.36

One important feature united almost all of these experiments:
the networks of the computer manufacturers were generally pig
gybacked, or bootstrapped, onto existing telecommunications
infrastructures built by staterun or regulated monopoly telecom
munications firms. This situation inevitably spelled grief, for tele
communications providers are highly regulated entities, while the
computer industry has been almost totally unregulated from its

170 conceiving open systems

inception. Since an increasingly core part of the computer industry’s
business involved transporting signals through telecommunications
systems without being regulated to do so, the telecommunications
industry naturally felt themselves at a disadvantage.37 Telecom
munications companies were not slow to respond to the need for
data communications, but their ability to experiment with products
and practices outside the scope of telephony and telegraphy was
often hindered by concerns about antitrust and monopoly.38 The
unregulated computer industry, by contrast, saw the tentativeness
of the telecommunications industry (or national PTTs) as either
bureaucratic inertia or desperate attempts to maintain control and
power over existing networks—though no computer manufacturer
relished the idea of building their own physical network when so
many already existed.

TCP/IP and OSI have become emblematic of the split between the
worlds of telecommunications and computing; the metaphors of re
ligious wars or of blood feuds and cold wars were common.39 A par
ticularly arch account from this period is Carl Malamud’s Exploring
the Internet: A Technical Travelogue, which documents Malamud’s
(physical) visits to Internet sites around the globe, discussions (and
beer) with networking researchers on technical details of the net
works they have created, and his own typically geeky, occasionally
offensive takes on cultural difference.40 A subtheme of the story is
the religious war between Geneva (in particular the ITU) and the
Internet: Malamud tells the story of asking the ITU to release its
19,000page “blue book” of standards on the Internet, to facilitate
its adoption and spread.

The resistance of the ITU and Malamud’s heroic if quixotic attempts
are a parable of the moraltechnical imaginaries of openness—
and indeed, his story draws specifically on the usable past of Gior
dano Bruno.41 The “bruno” project demonstrates the gulf that exists
between two models of legitimacy—those of ISO and the ITU—in
which standards represent the legal and legitimate consensus of
a regulated industry, approved by member nations, paid for and
enforced by governments, and implemented and adhered to by
corporations.

Opposite ISO is the ad hoc, experimental style of Arpanet and
Internet researchers, in which standards are freely available and
implementations represent the mode of achieving consensus, rather
than the outcome of the consensus. In reality, such a rhetorical

171conceiving open systems

opposition is far from absolute: many ISO standards are used on
the Internet, and ISO remains a powerful, legitimate standards or
ganization. But the clash of established (telecommunications) and
emergent (computernetworking) industries is an important context
for understanding the struggle between OSI and TCP/IP.

The need for standard networking protocols is unquestioned: in
teroperability is the bread and butter of a network. Nonetheless,
the goals of the OSI and the TCP/IP protocols differed in important
ways, with profound implications for the shape of that interoper
ability. OSI’s goals were completeness, control, and comprehen
siveness. OSI grew out of the telecommunications industry, which
had a long history of confronting the vicissitudes of linking up net
works and facilitating communication around the world, a problem
that required a strong process of consensus and negotiation among
large, powerful, governmentrun entities, as well as among smaller
manufacturers and providers. OSI’s feet were firmly planted in the
international standardization organizations like OSI and the ITU
(an organization as old as telecommunications itself, dating to the
1860s).

Even if they were oftmocked as slow, bureaucratic, or cumber
some, the processes of ISO and ITU—based in consensus, inter
national agreement, and thorough technical specification—are
processes of unquestioned legitimacy. The representatives of nations
and corporations who attend ISO and ITU standards discussions,
and who design, write, and vote on these standards, are usually not
bureaucrats, but engineers and managers directly concerned with
the needs of their constituency. The consensusoriented process
means that ISO and ITU standards attempt to satisfy all members’
goals, and as such they tend to be very large, complex, and highly
specific documents. They are generally sold to corporations and
others who need to use them, rather than made freely available, a
fact that until recently reflected their legitimacy, rather than lack
thereof.

TCP/IP, on the other hand, emerged from very different condi
tions.42 These protocols were part of a Department of Defense–
funded experimental research project: Arpanet. The initial Arpanet
protocols (the Network Control Protocol, or NCP) were insuffi
cient, and TCP/IP was an experiment in interconnecting two dif
ferent “packetswitched networks”: the groundline–based Arpanet
network and a radiowave network called Packet Radio.43 The

172 conceiving open systems

problem facing the designers was not how to accommodate every
one, but merely how to solve a specific problem: interconnecting
two technically diverse networks, each with autonomous admin
istrative boundaries, but forcing neither of them to give up the
system or the autonomy.

Until the mid1980s, the TCP/IP protocols were resolutely research
oriented, and not the object of mainstream commercial interest.
Their development reflected a core set of goals shared by research
ers and ultimately promoted by the central funding agency, the
Department of Defense. The TCP/IP protocols are often referred to
as enabling packetswitched networks, but this is only partially cor
rect; the real innovation of this set of protocols was a design for an
“internetwork,” a system that would interconnect several diverse
and autonomous networks (packetswitched or circuitswitched),
without requiring them to be transformed, redesigned, or standard
ized—in short, by requiring only standardization of the intercom
munication between networks, not standardization of the network
itself. In the first paper describing the protocol Robert Kahn and
Vint Cerf motivated the need for TCP/IP thus: “Even though many
different and complex problems must be solved in the design of
an individual packetswitching network, these problems are mani
festly compounded when dissimilar networks are interconnected.
Issues arise which may have no direct counterpart in an individual
network and which strongly influence the way in which Internet
work communication can take place.”44

The explicit goal of TCP/IP was thus to share computer resources,
not necessarily to connect two individuals or firms together, or to
create a competitive market in networks or networking software.
Sharing between different kinds of networks implied allowing the
different networks to develop autonomously (as their creators and
maintainers saw best), but without sacrificing the ability to continue
sharing. Years later, David Clark, chief Internet engineer for several
years in the 1980s, gave a much more explicit explanation of the
goals that led to the TCP/IP protocols. In particular, he suggested
that the main overarching goal was not just to share resources but
“to develop an effective technique for multiplexed utilization of
existing interconnected networks,” and he more explicitly stated
the issue of control that faced the designers: “Networks represent
administrative boundaries of control, and it was an ambition of this
project to come to grips with the problem of integrating a number

173conceiving open systems

of separately administrated entities into a common utility.”45 By
placing the goal of expandability first, the TCP/IP protocols were
designed with a specific kind of simplicity in mind: the test of the
protocols’ success was simply the ability to connect.

By setting different goals, TCP/IP and OSI thus differed in terms of
technical details; but they also differed in terms of their context and
legitimacy, one being a product of internationalstandards bodies,
the other of militaryfunded research experiments. The technical
and organizational differences imply different processes for stan
dardization, and it is the peculiar nature of the socalled Requests
for Comments (RFC) process that gave TCP/IP one of its most dis
tinctive features. The RFC system is widely recognized as a unique
and serendipitous outcome of the research process of Arpanet.46 In
a thirtyyear retrospective (published, naturally, as an RFC: RFC
2555), Vint Cerf says, “Hiding in the history of the RFCs is the
history of human institutions for achieving cooperative work.” He
goes on to describe their evolution over the years: “When the RFCs
were first produced, they had an almost 19th century character to
them—letters exchanged in public debating the merits of various
design choices for protocols in the ARPANET. As email and bulletin
boards emerged from the fertile fabric of the network, the far-flung
participants in this historic dialog began to make increasing use of
the online medium to carry out the discussion—reducing the need
for documenting the debate in the RFCs and, in some respects, leav
ing historians somewhat impoverished in the process. RFCs slowly
became conclusions rather than debates.”47

Increasingly, they also became part of a system of discussion and
implementation in which participants created working software as
part of an experiment in developing the standard, after which there
was more discussion, then perhaps more implementation, and fi
nally, a standard. The RFC process was a way to condense the pro
cess of standardization and validation into implementation; which
is to say, the proof of open systems was in the successful connection
of diverse networks, and the creation of a standard became a kind
of ex post facto rubberstamping of this demonstration. Any further
improvement of the standard hinged on an improvement on the
standard implementation because the standards that resulted were
freely and widely available: “A user could request an RFC by email
from his host computer and have it automatically delivered to his
mailbox. . . . RFCs were also shared freely with official standards

174 conceiving open systems

bodies, manufacturers and vendors, other working groups, and uni
versities. None of the RFCs were ever restricted or classified. This
was no mean feat when you consider that they were being funded
by DoD during the height of the Cold War.”48

The OSI protocols were not nearly so freely available. The ironic
reversal—the transparency of a militaryresearch program versus the
opacity of a Genevabased internationalstandards organization—
goes a long way toward explaining the reasons why geeks might
find the story of TCP/IP’s success to be so appealing. It is not that
geeks are secretly militaristic, but that they delight in such sur
prising reversals, especially when those reversals exemplify the
kind of ad hoc, clever solution to problems of coordination that
the RFC process does. The RFC process is not the only alternative
to a consensusoriented model of standardization pioneered in the
international organizations of Geneva, but it is a specific response
to a reorientation of power and knowledge that was perhaps more
“intuitively obvious” to the creators of Arpanet and the Internet,
with its unusual design goals and context, than it would have been
to the purveyors of telecommunications systems with over a hun
dred years of experience in connecting people in very specific and
established ways.

Success as Failure

By 1985, OSI was an official standard, one with widespread accep
tance by engineers, by the government and military (the “GOSIP”
standard), and by a number of manufacturers, the most significant
of which was General Motors, with its Manufacturing Automa
tion Protocol (MAP). In textbooks and handbooks of the late 1980s
and early 1990s, OSI was routinely referred to as the inevitable
standard—which is to say, it had widespread legitimacy as the
standard that everyone should be implementing—but few imple
mentations existed. Many of the textbooks on networking from the
late 1980s, especially those slanted toward a theoretical introduc
tion, give elaborate detail of the OSI reference model—a genera
tion of students in networking was no doubt trained to understand
the world in terms of OSI—but the ambivalence continued. Indeed,
the most enduring legacy of the creation of the OSI protocols is
not the protocols themselves (some of which, like ASN.1, are still

175conceiving open systems

widely used today), but the pedagogical model: the “7 layer stack”
that is as ubiquitous in networking classes and textbooks as UNIX
is in operatingsystems classes.49

But in the late 1980s, the ambivalence turned to confusion. With
OSI widely recognized as the standard, TCP/IP began to show up
in more and more actually existing systems. For example, in Com-
puter Network Architectures and Protocols, Carl Sunshine says, “Now
in the late 1980s, much of the battling seems over. CCITT and
ISO have aligned their efforts, and the research community seems
largely to have resigned itself to OSI.” But immediately afterward
he adds: “It is ironic that while a consensus has developed that
OSI is indeed inevitable, the TCP/IP protocol suite has achieved
widespread deployment, and now serves as a de facto interoper
ability standard. . . . It appears that the vendors were unable to
bring OSI products to market quickly enough to satisfy the de
mand for interoperable systems, and TCP/IP were there to fill the
need.”50

The more implementations that appeared, the less secure the
legitimate standard seemed to be. By many accounts the OSI speci
fications were difficult to implement, and the yearly networking-
industry “Interop” conferences became a regular locale for the
religious war between TCP/IP and OSI. The success of TCP/IP over
OSI reflects the reorientation of knowledge and power to which
Free Software is also a response. The reasons for the success are no
doubt complex, but the significance of the success of TCP/IP illus
trates three issues: availability, modifiability, and serendipity.

Availability The TCP/IP standards themselves were free to any
one and available over TCP/IP networks, exemplifying one of the
aspects of a recursive public: that the only test of participation in
a TCP/IPbased internetwork is the fact that one possesses or has
created a device that implements TCP/IP. Access to the network is
contingent on the interoperability of the networks. The standards
were not “published” in a conventional sense, but made available
through the network itself, without any explicit intellectual prop
erty restrictions, and without any fees or restrictions on who could
access them. By contrast, ISO standards are generally not circulated
freely, but sold for relatively high prices, as a source of revenue,
and under the general theory that only legitimate corporations or
government agencies would need access to them.

176 conceiving open systems

Related to the availability of the standards is the fact that the
standards process that governed TCP/IP was itself open to anyone,
whether corporate, military or academic. The structure of gover
nance of the Internet Engineering Task Force (the IETF) and the In
ternet Society (ISOC) allowed for anyone with the means available
to attend the “working group” meetings that would decide on the
standards that would be approved. Certainly this does not mean that
the engineers and defense contractors responsible actively sought
out corporate stakeholders or imagined the system to be “public”
in any dramatic fashion; however, compared to the system in place
at most standards bodies (in which members are usually required
to be the representatives of corporations or governments), the IETF
allowed individuals to participate qua individuals.51

Modifiability  Implementations of TCP/IP were widely available,
bootstrapped from machine to machine along with the UNIX op
erating system and other tools (e.g., the implementation of TCP/
IP in BSD 4.2, the BSD version of UNIX), generally including the
source code. An existing implementation is a much more expressive
and usable object than a specification for an implementation, and
though ISO generally prepares reference implementations for such
standards, in the case of OSI there were many fewer implementa
tions to work with or build on. Because multiple implementations of
TCP/IP already existed, it was easy to validate: did your (modified)
implementation work with the other existing implementations? By
contrast, OSI would provide independent validation, but the in situ
validation through connection to other OSI networks was much
harder to achieve, there being too few of them, or access being re
stricted. It is far easier to build on an existing implementation and
to improve on it piecemeal, or even to rewrite it completely, using its
faults as a template (so to speak), than it is to create an implementa
tion based solely on a standard. The existence of the TCP/IP protocols
in BSD 4.2 not only meant that people who installed that operating
system could connect to the Internet easily, at a time when it was by
no means standard to be able to do so, but it also meant that manu
facturers or tinkerers could examine the implementation in BSD 4.2
as the basis for a modified, or entirely new, implementation.

Serendipity Perhaps most significant, the appearance of wide
spread and popular applications that were dependent on TCP/IP

177conceiving open systems

gave those protocols an inertia that OSI, with relatively few such
applications, did not have. The most important of these by far was
the World Wide Web (the http protocol, the HTML markup lan
guage, and implementations of both servers, such as libwww, and
clients, such as Mosaic and Netscape). The basic components of the
Web were made to work on top of the TCP/IP networks, like other
services that had already been designed (ftp, telnet, gopher, archie,
etc.); thus, Tim BernersLee, who coinvented the World Wide Web,
could also rely on the availability and openness of previous work
for his own protocols. In addition, BernersLee and CERN (the Eu
ropean Organization for Nuclear Research) dedicated their work
to the public domain more or less immediately, essentially allow
ing anyone to do anything they wished with the system they had
cobbled together.52 From the perspective of the tension between
TCP/IP and OSI, the World Wide Web was thus what engineers call
a “killer app,” because its existence actually drove individuals and
corporations to make decisions (in favor of TCP/IP) that it might
not have made otherwise.

Conclusion

Openness and open systems are key to understanding the prac
tices of Free Software: the opensystems battles of the 1980s set the
context for Free Software, leaving in their wake a partially articu
lated infrastructure of operating systems, networks, and markets
that resulted from figuring out open systems. The failure to create
a standard UNIX operating system opened the door for Microsoft
Windows NT, but it also set the stage for the emergence of the Linux
operatingsystem kernel to emerge and spread. The success of the
TCP/IP protocols forced multiple competing networking schemes
into a single standard—and a singular entity, the Internet—which
carried with it a set of builtin goals that mirror the moraltechnical
order of Free Software.

This “infrastructure” is at once technical (protocols and standards
and implementations) and moral (expressing ideas about the proper
order and organization of commercial efforts to provide high-tech
software, networks, and computing power). As with the invention
of UNIX, the opposition commercialnoncommercial (or its dop
pelgangers public-private, profit-nonprofit, capitalist-socialist, etc.)

178 conceiving open systems

doesn’t capture the context. Constraints on the ability to collab
orate, compete, or withdraw are in the making here through the
technical and moral imaginations of the actors involved: from the
corporate behemoths like IBM to (onetime) startups like Sun to
the independent academics and amateurs and geeks with stakes in
the new hightech world of networks and software.

The creation of a UNIX market failed. The creation of a legiti
mate international networking standard failed. But they were
local failures only. They opened the doors to new forms of com
mercial practice (exemplified by Netscape and the dotcom boom)
and new kinds of politicotechnical fractiousness (ICANN, IPv6, and
“net neutrality”). But the blind spot of open systems—intellectual
property—at the heart of these failures also provided the impetus
for some geeks, entrepreneurs, and lawyers to start figuring out
the legal and economic aspects of Free Software, and it initiated a
vibrant experimentation with copyright licensing and with forms
of innovative coordination and collaboration built on top of the
rapidly spreading protocols of the Internet.

6.Writing Copyright Licenses

To protect your rights, we need to make restrictions
that forbid anyone to deny you these rights or to ask you

to surrender the rights.—Preamble to the GNU
General Public License

The use of novel, unconventional copyright licenses is, without a
doubt, the most widely recognized and exquisitely refined compo-
nent of Free Software. The GNU General Public License (GPL), writ-
ten initially by Richard Stallman, is often referred to as a beautiful,
clever, powerful “hack” of intellectual-property law—when it isn’t
being denounced as a viral, infectious object threatening the very
fabric of economy and society. The very fact that something so bor-
ing, so arcane, and so legalistic as a copyright license can become
an object of both devotional reverence and bilious scorn means
there is much more than fine print at stake.

6.

180 writing copyright licenses

By the beginning of the twenty-first century, there were hundreds
of different Free Software licenses, each with subtle legal and tech-
nical differences, and an enormous legal literature to explain their
details, motivation, and impact.1 Free Software licenses differ from
conventional copyright licenses on software because they usually
restrict only the terms of distribution, while so-called End User
License Agreements (EULAs) that accompany most proprietary
software restrict what users can do with the software. Ethnographi-
cally speaking, licenses show up everywhere in the field, and contem-
porary hackers are some of the most legally sophisticated non-lawyers
in the world. Indeed, apprenticeship in the world of hacking is now
impossible, as Gabriella Coleman has shown, without a long, deep
study of intellectual-property law.2

But how did it come to be this way? As with the example of shar-
ing UNIX source code, Free Software licenses are often explained as
a reaction to expanding intellectual-property laws and resistance
to rapacious corporations. The text of the GPL itself begins deep in
such assumptions: “The licenses for most software are designed to
take away your freedom to share and change it.”3 But even if cor-
porations are rapacious, sharing and modifying software are by no
means natural human activities. The ideas of sharing and of com-
mon property and its relation to freedom must always be produced
through specific practices of sharing, before being defended. The
GPL is a precise example of how geeks fit together the practices
of sharing and modifying software with the moral and technical
orders—the social imaginaries—of freedom and autonomy. It is at
once an exquisitely precise legal document and the expression of
an idea of how software should be made available, shareable, and
modifiable.

In this chapter I tell the story of the creation of the GPL, the first
Free Software license, during a controversy over EMACS, a very
widely used and respected piece of software; the controversy con-
cerned the reuse of bits of copyrighted source code in a version of
EMACS ported to UNIX. There are two reasons to retell this story
carefully. The first is simply to articulate the details of the origin
of the Free Software license itself, as a central component of Free
Software, details that should be understood in the context of chang-
ing copyright law and the UNIX and open-systems struggles of the
1980s. Second, although the story of the GPL is also an oft-told
story of the “hacker ethic,” the GPL is not an “expression” of this

181writing copyright licenses

ethic, as if the ethic were genotype to a legal phenotype. Opposite
the familiar story of ethics, I explain how the GPL was “figured out”
in the controversy over EMACS, how it was formed in response to
a complicated state of affairs, both legal and technical, and in a
medium new to all the participants: the online mailing lists and
discussion lists of Usenet and Arpanet.4

The story of the creation of the GNU General Public License ulti-
mately affirms the hacker ethic, not as a story of the ethical hacker
genius, but as a historically specific event with a duration and a
context, as something that emerges in response to the reorienta-
tion of knowledge and power, and through the active modulation
of existing practices among both human and nonhuman actors.
While hackers themselves might understand the hacker ethic as
an unchanging set of moral norms, their practices belie this belief
and demonstrate how ethics and norms can emerge suddenly and
sharply, undergo repeated transformations, and bifurcate into ideo-
logically distinct camps (Free Software vs. Open Source), even as
the practices remain stable relative to them. The hacker ethic does
not descend from the heights of philosophy like the categorical im-
perative—hackers have no Kant, nor do they want one. Rather, as
Manuel Delanda has suggested, the philosophy of Free Software is
the fact of Free Software itself, its practices and its things. If there
is a hacker ethic, it is Free Software itself, it is the recursive public
itself, which is much more than a list of norms.5 By understanding
it in this way, it becomes possible to track the proliferation and
differentiation of the hacker ethic into new and surprising realms,
instead of assuming its static universal persistence as a mere pro-
cedure that hackers execute.

Free Software Licenses, Once More with Feeling

In lecturing on liberalism in 1935, John Dewey said the following of
Jeremy Bentham: “He was, we might say, the first great muck-raker
in the field of law . . . but he was more than that, whenever he saw
a defect, he proposed a remedy. He was an inventor in law and ad-
ministration, as much so as any contemporary in mechanical pro-
duction.”6 Dewey’s point was that the liberal reforms attributed to
Bentham came not so much from his theories as from his direct in-
volvement in administrative and legal reform—his experimentation.

182 writing copyright licenses

Whether or not Bentham’s influence is best understood this way, it
nonetheless captures an important component of liberal reform in
Europe and America that is also a key component in the story of
Free Software: that the route to achieving change is through direct
experiment with the system of law and administration.

A similar story might be told of Richard Stallman, hacker hero
and founder of the Free Software Foundation, creator of (among
many other things) the GNU C Compiler and GNU EMACS, two of
the most widely used and tested Free Software tools in the world.
Stallman is routinely abused for holding what many perceive to be
“dogmatic” or “intractable” ideological positions about freedom
and the right of individuals to do what they please with software.
While it is no doubt quite true that his speeches and writings clearly
betray a certain fervor and fanaticism, it would be a mistake to
assume that his speeches, ideas, or belligerent demands concern-
ing word choice constitute the real substance of his reform. In fact,
it is the software he has created and the licenses he has written
and rewritten which are the key to his Bentham-like inventiveness.
Unlike Bentham, however, Stallman is not a creator of law and
administrative structure, but a hacker.

Stallman’s GNU General Public License “hacks” the federal copy-
right law, as is often pointed out. It does this by taking advantage
of the very strong rights granted by federal law to actually loosen
the restrictions normally associated with ownership. Because the
statutes grant owners strong powers to create restrictions, Stall-
man’s GPL contains the restriction that anybody can use the li-
censed material, for any purpose, so long as they subsequently offer
the same restriction. Hacks (after which hackers are named) are
clever solutions to problems or shortcomings in technology. Hacks
are work-arounds, clever, shortest-path solutions that take advan-
tage of characteristics of the system that may or may not have been
obvious to the people who designed it. Hacks range from purely
utilitarian to mischievously pointless, but they always depend on
an existing system or tool through which they achieve their point.
To call Free Software a hack is to point out that it would be noth-
ing without the existence of intellectual-property law: it relies on
the structure of U.S. copyright law (USC§17) in order to subvert
it. Free Software licenses are, in a sense, immanent to copyright
laws—there is nothing illegal or even legally arcane about what
they accomplish—but there is nonetheless a kind of lingering sense

183writing copyright licenses

that this particular use of copyright was not how the law was in-
tended to function.

Like all software since the 1980 copyright amendments, Free
Software is copyrightable—and what’s more, automatically copy-
righted as it is written (there is no longer any requirement to reg-
ister). Copyright law grants the author (or the employer of the
author) a number of strong rights over the dispensation of what has
been written: rights to copy, distribute, and change the work.7 Free
Software’s hack is to immediately make use of these rights in order
to abrogate the rights the programmer has been given, thus grant-
ing all subsequent licensees rights to copy, distribute, modify, and
use the copyrighted software. Some licenses, like the GPL, add the
further restriction that every licensee must offer the same terms to
any subsequent licensee, others make no such restriction on subse-
quent uses. Thus, while statutory law suggests that individuals need
strong rights and grants them, Free Software licenses effectively
annul them in favor of other activities, such as sharing, porting,
and forking software. It is for this reason that they have earned the
name “copyleft.”8

This is a convenient ex post facto description, however. Neither
Stallman nor anyone else started out with the intention of hack-
ing copyright law. The hack of the Free Software licenses was a
response to a complicated controversy over a very important inven-
tion, a tool that in turn enabled an invention called EMACS. The
story of the controversy is well-known among hackers and geeks,
but not often told, and not in any rich detail, outside of these small
circles.9

EMACS, the Extensible, Customizable,
Self-documenting, Real-time Display Editor

EMACS is a text editor; it is also something like a religion. As one
of the two most famous text editors, it is frequently lauded by its
devoted users and attacked by detractors who prefer its competitor
(Bill Joy’s vi, also created in the late 1970s). EMACS is more than
just a tool for writing text; for many programmers, it was (and still
is) the principal interface to the operating system. For instance,
it allows a programmer not only to write a program but also to
debug it, to compile it, to run it, and to e-mail it to another user,

184 writing copyright licenses

all from within the same interface. What’s more, it allows users to
quickly and easily write extensions to EMACS itself, extensions that
automate frequent tasks and in turn become core features of the
software. It can do almost anything, but it can also frustrate almost
anyone. The name itself is taken from its much admired extensibil-
ity: EMACS stands for “editing macros” because it allows program-
mers to quickly record a series of commands and bundle them into
a macro that can be called with a simple key combination. In fact,
it was one of the first editors (if not the first) to take advantage of
keys like ctrl and meta, as in the now ubiquitous ctrl-S familiar to
users of non-free word processors like Microsoft Word™.

Appreciate the innovation represented by EMACS: before the
UNIX-dominated minicomputer era, there were very few programs
for directly manipulating text on a display. To conceive of source
code as independent of a program running on a machine meant
first conceiving of it as typed, printed, or hand-scrawled code which
programmers would scrutinize in its more tangible, paper-based
form. Editors that allowed programmers to display the code in front
of them on a screen, to manipulate it directly, and to save changes
to those files were an innovation of the mid- to late 1960s and were
not widespread until the mid-1970s (and this only for bleeding-
edge academics and computer corporations). Along with a few
early editors, such as QED (originally created by Butler Lampson
and Peter Deutsch, and rewritten for UNIX by Ken Thompson), one
of the most famous of these was TECO (text editor and correc-
tor), written by Dan Murphy for DEC’s PDP-1 computer in 1962–63.
Over the years, TECO was transformed (ported and extended) to
a wide variety of machines, including machines at Berkeley and
MIT, and to other DEC hardware and operating systems. By the
early 1970s, there was a version of TECO running on the Incompat-
ible Time-sharing System (ITS), the system in use at MIT’s Artificial
Intelligence (AI) Lab, and it formed the basis for EMACS. (Thus,
EMACS was itself conceived of as a series of macros for a separate
editor: Editing MACroS for TECO.)

Like all projects on ITS at the AI Lab, many people contributed
to the extension and maintenance of EMACS (including Guy Steele,
Dave Moon, Richard Greenblatt, and Charles Frankston), but there
is a clear recognition that Stallman made it what it was. The earli-
est AI Lab memo on EMACS, by Eugene Ciccarelli, says: “Finally, of
all the people who have contributed to the development of EMACS,

185writing copyright licenses

and the TECO behind it, special mention and appreciation go to
Richard M. Stallman. He not only gave TECO the power and gen-
erality it has, but brought together the good ideas of many different
Teco-function packages, added a tremendous amount of new ideas
and environment, and created EMACS. Personally one of the joys
of my avocational life has been writing Teco/EMACS functions;
what makes this fun and not painful is the rich set of tools to work
with, all but a few of which have an ‘RMS’ chiseled somewhere on
them.”10

At this point, in 1978, EMACS lived largely on ITS, but its repu-
tation soon spread, and it was ported to DEC’s TOPS-20 (Twenex)
operating system and rewritten for Multics and the MIT’s LISP ma-
chine, on which it was called EINE (Eine Is Not EMACS), and which
was followed by ZWEI (Zwei Was Eine Initially).

The proliferation of EMACS was both pleasing and frustrating to
Stallman, since it meant that the work fragmented into different
projects, each of them EMACS-like, rather than building on one
core project, and in a 1981 report he said, “The proliferation of
such superficial facsimiles of EMACS has an unfortunate confusing
effect: their users, not knowing that they are using an imitation of
EMACS and never having seen EMACS itself, are led to believe they
are enjoying all the advantages of EMACS. Since any real-time dis-
play editor is a tremendous improvement over what they probably
had before, they believe this readily. To prevent such confusion, we
urge everyone to refer to a nonextensible imitation of EMACS as an
‘ersatz EMACS.’ ”11

Thus, while EMACS in its specific form on ITS was a creation of
Stallman, the idea of EMACS or of any “real-time display editor”
was proliferating in different forms and on different machines. The
porting of EMACS, like the porting of UNIX, was facilitated by both
its conceptual design integrity and its widespread availability.

The phrase “nonextensible imitation” captures the combination
of design philosophy and moral philosophy that EMACS repre-
sented. Extensibility was not just a useful feature for the individual
computer user; it was a way to make the improvements of each new
user easily available equally to all by providing a standard way for
users to add extensions and to learn how to use new extensions that
were added (the “self-documenting” feature of the system). The
program had a conceptual integrity that was compromised when it
was copied imperfectly. EMACS has a modular, extensible design

186 writing copyright licenses

that by its very nature invites users to contribute to it, to extend it,
and to make it perform all manner of tasks—to literally copy and
modify it, instead of imitating it. For Stallman, this was not only
a fantastic design for a text editor, but an expression of the way
he had always done things in the small-scale setting of the AI Lab.
The story of Stallman’s moral commitments stresses his resistance
to secrecy in software production, and EMACS is, both in its design
and in Stallman’s distribution of it an example of this resistance.

Not everyone shared Stallman’s sense of communal order, how-
ever. In order to facilitate the extension of EMACS through sharing,
Stallman started something he called the “EMACS commune.” At
the end of the 1981 report—“EMACS: The Extensible, Customizable
Self-documenting Display Editor,” dated 26 March—he explained
the terms of distribution for EMACS: “It is distributed on a basis of
communal sharing, which means that all improvements must be
given back to me to be incorporated and distributed. Those who
are interested should contact me. Further information about how
EMACS works is available in the same way.”12

In another report, intended as a user’s manual for EMACS, Stall-
man gave more detailed and slightly more colorful instructions:

EMACS does not cost anything; instead, you are joining the EMACS
software-sharing commune. The conditions of membership are that
you must send back any improvements you make to EMACS, includ-
ing any libraries you write, and that you must not redistribute the
system except exactly as you got it, complete. (You can also distribute
your customizations, separately.) Please do not attempt to get a copy
of EMACS, for yourself or anyone else, by dumping it off of your lo-
cal system. It is almost certain to be incomplete or inconsistent. It is
pathetic to hear from sites that received incomplete copies lacking
the sources [source code], asking me years later whether sources are
available. (All sources are distributed, and should be on line at every
site so that users can read them and copy code from them). If you wish
to give away a copy of EMACS, copy a distribution tape from MIT, or
mail me a tape and get a new one.13

Because EMACS was so widely admired and respected, Stallman
had a certain amount of power over this commune. If it had been
an obscure, nonextensible tool, useful for a single purpose, no one
would have heeded such demands, but because EMACS was by na-
ture the kind of tool that was both useful for all kinds of tasks and

187writing copyright licenses

customizable for specific ones, Stallman was not the only person
who benefited from this communal arrangement. Two disparate
sites may well have needed the same macro extension, and there-
fore many could easily see the social benefit in returning exten-
sions for inclusion, as well as in becoming a kind of co-developer
of such a powerful system. As a result, the demands of the EMACS
commune, while unusual and autocratic, were of obvious value to
the flock. In terms of the concept of recursive public, EMACS was
itself the tool through which it was possible for users to extend
EMACS, the medium of their affinity; users had a natural incentive
to share their contributions so that all might receive the maximum
benefit.

The terms of the EMACS distribution agreement were not quite
legally binding; nothing compelled participation except Stallman’s
reputation, his hectoring, or a user’s desire to reciprocate. On the
one hand, Stallman had not yet chosen to, or been forced to, under-
stand the details of the legal system, and so the EMACS commune
was the next best thing. On the other hand, the state of intellectual-
property law was in great flux at the time, and it was not clear to
anyone, whether corporate or academic, exactly what kind of legal
arrangements would be legitimate (the 1976 changes to copyright
law were some of the most drastic in seventy years, and a 1980
amendment made software copyrightable, but no court cases had
yet tested these changes). Stallman’s “agreement” was a set of in-
formal rules that expressed the general sense of mutual aid that
was a feature of both the design of the system and Stallman’s own
experience at the AI Lab. It was an expression of the way Stallman
expected others to behave, and his attempts to punish or shame
people amounted to informal enforcement of these expectations.
The small scale of the community worked in Stallman’s favor.

At its small scale, Stallman’s commune was confronting many of
the same issues that haunted the open-systems debates emerging
at the same time, issues of interoperability, source-code sharing,
standardization, portability, and forking. In particular, Stallman
was acutely aware of the blind spot of open systems: the conflict of
moral-technical orders represented by intellectual property. While
UNIX vendors left intellectual-property rules unchallenged and
simply assumed that they were the essential ground rules of debate,
Stallman made them the substance of his experiment and, like Ben-
tham, became something of a legal muckraker as a result.

188 writing copyright licenses

Stallman’s communal model could not completely prevent the
porting and forking of software. Despite Stallman’s request that
imitators refer to their versions of EMACS as ersatz EMACS, few
did. In the absence of legal threats over a trademarked term there
was not much to stop people from calling their ports and forks
EMACS, a problem of success not unlike that of Kleenex or Xerox.
Few people took the core ideas of EMACS, implemented them in an
imitation, and then called it something else (EINE and ZWEI were
exceptions). In the case of UNIX the proliferation of forked versions
of the software did not render them any less UNIX, even when
AT&T insisted on ownership of the trademarked name. But as time
went on, EMACS was ported, forked, rewritten, copied, or imitated
on different operating systems and different computer architectures
in universities and corporations around the world; within five or six
years, many versions of EMACS were in wide use. It was this situ-
ation of successful adoption that would provide the context for the
controversy that occurred between 1983 and 1985.

The Controversy

In brief the controversy was this: in 1983 James Gosling decided to
sell his version of EMACS—a version written in C for UNIX called
GOSMACS—to a commercial software vendor called Unipress.
GOSMACS, the second most famous implementation of EMACS
(after Stallman’s itself), was written when Gosling was a graduate
student at Carnegie Mellon University. For years, Gosling had dis-
tributed GOSMACS by himself and had run a mailing list on Usenet,
on which he answered queries and discussed extensions. Gosling
had explicitly asked people not to redistribute the program, but to
come back to him (or send interested parties to him directly) for
new versions, making GOSMACS more of a benevolent dictatorship
than a commune. Gosling maintained his authority, but graciously
accepted revisions and bug-fixes and extensions from users, incor-
porating them into new releases. Stallman’s system, by contrast,
allowed users to distribute their extensions themselves, as well
as have them included in the “official” EMACS. By 1983, Gosling
had decided he was unable to effectively maintain and support
GOSMACS—a task he considered the proper role of a corporation.

189writing copyright licenses

For Stallman, Gosling’s decision to sell GOSMACS to Unipress
was “software sabotage.” Even though Gosling had been substan-
tially responsible for writing GOSMACS, Stallman felt somewhat
proprietorial toward this ersatz version—or, at the very least, was
irked that no noncommercial UNIX version of EMACS existed. So
Stallman wrote one himself (as part of a project he announced
around the same time, called GNU [GNU’s Not UNIX], to create a
complete non-AT&T version of UNIX). He called his version GNU
EMACS and released it under the same EMACS commune terms.
The crux of the debate hinged on the fact that Stallman used, albeit
ostensibly with permission, a small piece of Gosling’s code in his
new version of EMACS, a fact that led numerous people, including
the new commercial suppliers of EMACS, to cry foul. Recrimina-
tions and legal threats ensued and the controversy was eventually
resolved when Stallman rewrote the offending code, thus creating
an entirely “Gosling-free” version that went on to become the stan-
dard UNIX version of EMACS.

The story raises several questions with respect to the changing
legal context. In particular, it raises questions about the difference
between “law on the books” and “law in action,” that is, the dif-
ference between the actions of hackers and commercial entities,
advised by lawyers and legally minded friends, and the text and
interpretation of statutes as they are written by legislators and in-
terpreted by courts and lawyers. The legal issues span trade secret,
patent, and trademark, but copyright is especially significant. Three
issues were undecided at the time: the copyrightability of software,
the definition of what counts as software and what doesn’t, and
the meaning of copyright infringement. While the controversy did
not resolve any of these issues (the first two would be resolved by
Congress and the courts, the third remains somewhat murky), it did
clarify the legal issues for Stallman sufficiently that he could leave
behind the informal EMACS commune and create the first version
of a Free Software license, the GNU General Public License, which
first started appearing in 1985.

Gosling’s decision to sell GOSMACS, announced in April of 1983,
played into a growing EMACS debate being carried out on the
GOSMACS mailing list, a Usenet group called net.emacs. Since net
.emacs was forwarded to the Arpanet via a gateway maintained
by John Gilmore at Sun Microsystems, a fairly large community

190 writing copyright licenses

of EMACS users were privy to Gosling’s announcement. Prior to
his declaration, there had been quite a bit of discussion regarding
different versions of EMACS, including an already “commercial”
version called CCA EMACS, written by Steve Zimmerman, of Com-
puter Corporation of America (CCA).14 Some readers wanted com-
parisons between CCA EMACS and GOSMACS; others objected that
it was improper to discuss a commercial version on the list: was
such activity legitimate, or should it be carried out as part of the
commercial company’s support activities? Gosling’s announcement
was therefore a surprise, since it was already perceived to be the
“noncommercial” version.

Date: Tue Apr 12 04:51:12 1983
Subject: EMACS goes commercial

The version of EMACS that I wrote is now available commercially
through a company called Unipress. . . . They will be doing develop-
ment, maintenance and will be producing a real manual. EMACS will
be available on many machines (it already runs on VAXen under Unix
and VMS, SUNs, codatas, and Microsoft Xenix). Along with this, I
regret to say that I will no longer be distributing it.

This is a hard step to take, but I feel that it is necessary. I can no
longer look after it properly, there are too many demands on my time.
EMACS has grown to be completely unmanageable. Its popularity has
made it impossible to distribute free: just the task of writing tapes and
stuffing them into envelopes is more than I can handle.

The alternative of abandoning it to the public domain is unaccept-
able. Too many other programs have been destroyed that way.

Please support these folks. The effort that they can afford to put into
looking after EMACS is directly related to the support they get. Their
prices are reasonable.
James.15

The message is worth paying careful attention to: Gosling’s work
of distributing the tapes had become “unmanageable,” and the work
of maintenance, upkeep, and porting (making it available on mul-
tiple architectures) is something he clearly believes should be done
by a commercial enterprise. Gosling, it is clear, did not understand
his effort in creating and maintaining EMACS to have emerged
from a communal sharing of bits of code—even if he had done
a Sisyphean amount of work to incorporate all the changes and
suggestions his users had made—but he did long have a commit-

191writing copyright licenses

ment to distributing it for free, a commitment that resulted in many
people contributing bits and pieces to GOSMACS.

“Free,” however, did not mean “public domain,” as is clear from
his statement that “abandoning it” to the public domain would
destroy the program. The distinction is an important one that was,
and continues to be, lost on many sophisticated members of net
.emacs. Here, free means without charge, but Gosling had no in-
tention of letting that word suggest that he was not the author,
owner, maintainer, distributor, and sole beneficiary of whatever
value GOSMACS had. Public domain, by contrast, implied giving
up all these rights.16 His decision to sell GOSMACS to Unipress was
a decision to transfer these rights to a company that would then
charge for all the labor he had previously provided for no charge
(for “free”). Such a distinction was not clear to everyone; many
people considered the fact that GOSMACS was free to imply that
it was in the public domain.17 Not least of these was Richard Stall-
man, who referred to Gosling’s act as “software sabotage” and
urged people to avoid using the “semi-ersatz” Unipress version.18

To Stallman, the advancing commercialization of EMACS, both
by CCA and by Unipress, was a frustrating state of affairs. The com-
mercialization of CCA had been of little concern so long as GOS-
MACS remained free, but with Gosling’s announcement, there was
no longer a UNIX version of EMACS available. To Stallman, how-
ever, “free” meant something more than either “public domain” or
“for no cost.” The EMACS commune was designed to keep EMACS
alive and growing as well as to provide it for free—it was an image
of community stewardship, a community that had included Gosling
until April 1983.

The disappearance of a UNIX version of EMACS, as well as the
sudden commercial interest in making UNIX into a marketable op-
erating system, fed into Stallman’s nascent plan to create a com-
pletely new, noncommercial, non-AT&T UNIX operating system
that he would give away free to anyone who could use it. He an-
nounced his intention on 27 September 1983:19

Free Unix!
Starting this Thanksgiving I am going to write a complete Unix-

compatible software system called GNU (for Gnu’s Not Unix), and give
it away free to everyone who can use it. Contributions of time, money,
programs and equipment are greatly needed.

192 writing copyright licenses

His justifications were simple.

Why I Must Write GNU
I consider that the golden rule requires that if I like a program I must

share it with other people who like it. I cannot in good conscience sign
a nondisclosure agreement or a software license agreement.

So that I can continue to use computers without violating my prin-
ciples, I have decided to put together a sufficient body of free software
so that I will be able to get along without any software that is not
free.20

At that point, it is clear, there was no “free software license.”
There was the word free, but not the term public domain. There was
the “golden rule,” and there was a resistance to nondisclosure and
license arrangements in general, but certainly no articulated con-
ception of copyleft of Free Software as a legally distinct entity. And
yet Stallman hardly intended to “abandon it” to the public domain,
as Gosling suggested. Instead, Stallman likely intended to require
the same EMACS commune rules to apply to Free Software, rules
that he would be able to control largely by overseeing (in a non-
legal sense) who was sent or sold what and by demanding (in the
form of messages attached to the software) that any modifications
or improvements come in the form of donations. It was during the
period 1983–85 that the EMACS commune morphed into the GPL,
as Stallman began adding copyrights and appending messages that
made explicit what people could do with the software.21

The GNU project initially received little attention, however; scat-
tered messages to net.unix-wizards over the course of 1983–84 pe-
riodically ask about the status and how to contact them, often in
the context of discussions of AT&T UNIX licensing practices that
were unfolding as UNIX was divested and began to market its own
version of UNIX.22 Stallman’s original plan for GNU was to start
with the core operating system, the kernel, but his extensive work
on EMACS and the sudden need for a free EMACS for UNIX led him
to start with a UNIX version of EMACS. In 1984 and into 1985, he
and others began work on a UNIX version of GNU EMACS. The two
commercial versions of UNIX EMACS (CCA EMACS and Unipress
EMACS) continued to circulate and improve in parallel. DEC us-
ers meanwhile used the original free version created by Stallman.
And, as often happens, life went on: Zimmerman left CCA in Au-

193writing copyright licenses

gust 1984, and Gosling moved to Sun, neither of them remaining
closely involved in the software they had created, but leaving the
new owners to do so.

By March 1985, Stallman had a complete version (version 15) of
GNU EMACS running on the BSD 4.2 version of UNIX (the version
Bill Joy had helped create and had taken with him to form the core
of Sun’s version of UNIX), running on DEC’s VAX computers. Stall-
man announced this software in a characteristically flamboyant
manner, publishing in the computer programmers’ monthly maga-
zine Dr. Dobbs an article entitled “The GNU Manifesto.”23

Stallman’s announcement that a free version of UNIX EMACS
was available caused some concern among commercial distribu-
tors. The main such concern was that GNU EMACS 15.34 contained
code marked “Copyright (c) James Gosling,” code used to make
EMACS display on screen.24 The “discovery” (not so difficult, since
Stallman always distributed the source code along with the binary)
that this code had been reused by Stallman led to extensive dis-
cussion among EMACS users of issues such as the mechanics of
copyright, the nature of infringement, the definition of software,
the meaning of public domain, the difference between patent, copy-
right, and trade secret, and the mechanics of permission and its
granting—in short, a discussion that would be repeatedly recapitu-
lated in nearly every software and intellectual property controversy
in the future.

The story of the controversy reveals the structure of rumor on
the Usenet to be a bit like the child’s game of Chinese Whispers,
except that the translations are all archived. GNU EMACS 15.34
was released in March 1985. Between March and early June there
was no mention of its legal status, but around June 3 messages
on the subject began to proliferate. The earliest mention of the is-
sue appeared not on net.emacs, but on fa.info-vax—a newsgroup
devoted to discussions of VAX computer systems (“fa” stands for
“from Arpanet”)—and it included a dialogue, between Ron Natalie
and Marty Sasaki, labeled “GNU EMACS: How Public Domain?”:
“FOO, don’t expect that GNU EMACS is really in the public domain.
UNIPRESS seems rather annoyed that there are large portions of it
that are marked copyright James Gosling.”25 This message was re-
printed on 4 June 1985 on net.emacs, with the addendum: “RMS’s
work is based on a version of Gosling code that existed before Uni-
press got it. Gosling had put that code into the public domain. Any

194 writing copyright licenses

work taking off from the early Gosling code is therefore also public
domain.”26

The addendum was then followed by an extensive reply from
Zimmerman, whose CCA EMACS had been based on Warren Mont-
gomery’s Bell Labs EMACS but rewritten to avoid reusing the code,
which may account for why his understanding of the issue seems to
have been both deep and troubling for him.

This is completely contrary to Gosling’s public statements. Before he
made his arrangements with Unipress, Gosling’s policy was that he
would send a free copy of his EMACS to anyone who asked, but he did
not (publicly, at least) give anyone else permission to make copies.
Once Unipress started selling Gosling’s EMACS, Gosling stopped dis-
tributing free copies and still did not grant anyone else permission
to make them; instead, he suggested that people buy EMACS from
Unipress. All versions of Gosling’s EMACS distributed by him carry
his copyright notice, and therefore none of them are in the public
domain. Removing copyright notices without the author’s permission
is, of course, illegal. Now, a quick check of my GNU EMACS sources
shows that sure enough, a number of files have Gosling’s copyright
notice in them. What this all means is that unless RMS got written per-
mission from Gosling to distribute his code, all copies of GNU EMACS
constitute violations of the copyright law. All those people making
such copies, including those people who allow them to be copied off
their machines, could each be liable for large sums of money. I think
that RMS had better tell us if he has Gosling’s written permission to
make these copies. If so, why has he not stated this earlier (preferably
in the distribution itself) and thereby cleared up a potentially major
point of confusion? If not, why has he gone ahead and made many,
many people liable for criminal prosecution by recommending that
they distribute this code without even warning them of their liability?
(People who distribute this code would be liable even if they claim
that they didn’t see Gosling’s notices; the fact that the notices are there
is sufficient. “Ignorance of the law is no excuse.”)

Now, I have nothing against free software; it’s a free country and
people can do what they want. It’s just that people who do distribute
free software had better be sure that they have the legal right to do so,
or be prepared to face the consequences. (Jun 9, 1985).27

Stallman replied the next day.

195writing copyright licenses

Nobody has any reason to be afraid to use or distribute GNU EMACS.
It is well known that I do not believe any software is anyone’s prop-
erty. However, for the GNU project, I decided it was necessary to obey
the law. I have refused to look at code I did not have permission to
distribute. About 5% of GNU EMACS is close to (though quite a bit
changed from) an old version of Gosling EMACS. I am distributing
it for Fen Labalme, who received permission from Gosling to distrib-
ute it. It is therefore legal for me to do so. To be scrupulously legal,
I put statements at the front of the files concerned, describing this
situation.

I don’t see anything I should warn people about—except that Zim-
merman is going to try to browbeat them.28

Stallman’s original defense for using Gosling’s code was that he
had permission to do so. According to him, Fen Labalme had received
written permission—whether to make use of or to redistribute is not
clear—the display code that was included in GNU EMACS 15.34.
According to Stallman, versions of Labalme’s version of Gosling’s
version of EMACS were in use in various places (including at La-
balme’s employer, Megatest), and Stallman and Labalme consid-
ered this a legally defensible position.29

Over the next two weeks, a slew of messages attempted to pick
apart and understand the issues of copyright, ownership, distri-
bution, and authorship. Gosling wrote to clarify that GOSMACS
had never been in the public domain, but that “unfortunately, two
moves have left my records in a shambles,” and he is therefore silent
on the question of whether he granted permission.30 Gosling’s claim
could well be strategic: giving permission, had he done so, might
have angered Unipress, which expected exclusive control over the
version he had sold; by the same token, he may well have approved
of Stallman’s re-creation, but not have wanted to affirm this in any
legally actionable way. Meanwhile, Zimmerman relayed an anony-
mous message suggesting that some lawyers somewhere found the
“third hand redistribution” argument was legally “all wet.”31

Stallman’s biggest concern was not so much the legality of his
own actions as the possibility that people would choose not to use
the software because of legal threats (even if such threats were is-
sued only as rumors by former employees of companies that distrib-
uted software they had written). Stallman wanted users not only

196 writing copyright licenses

to feel safe using his software but to adopt his view that software
exists to be shared and improved and that anything that hinders this
is a loss for everyone, which necessitates an EMACS commune.

Stallman’s legal grounds for using Gosling’s code may or may not
have been sound. Zimmerman did his best throughout to explain in
detail what kind of permission Stallman and Labalme would have
needed, drawing on his own experience with the CCA lawyers and
AT&T Bell Labs, all the while berating Stallman for not creating
the display code himself. Meanwhile, Unipress posted an official
message that said, “UniPress wants to inform the community that
portions of the GNU EMACS program are most definitely not pub-
lic domain, and that use and/or distribution of the GNU EMACS
program is not necessarily proper.”32 The admittedly vague tone
of the message left most people wondering what that meant—and
whether Unipress intended to sue anyone. Strategically speaking,
the company may have wished to maintain good will among hack-
ers and readers of net.emacs, an audience likely composed of many
potential customers. Furthermore, if Gosling had given permission
to Stallman, then Unipress would themselves have been on uncer-
tain legal ground, unable to firmly and definitively threaten users
of GNU EMACS with legal action. In either case, the question of
whether or not permission was needed was not in question—only
the question of whether it had been granted.33

However, a more complicated legal issue also arose as a result,
one concerning the status of code contributed to Gosling by others.
Fen Labalme wrote a message to net.emacs, which, although it did
not clarify the legal status of Gosling’s code (Labalme was also
unable to find his “permission” from Gosling), did raise a related
issue: the fact that he and others had made significant contribu-
tions to GOSMACS, which Gosling had incorporated into his ver-
sion, then sold to Unipress without their permission: “As one of the
‘others’ who helped to bring EMACS [GOSMACS] up to speed, I was
distressed when Jim sold the editor to UniPress. This seemed to be
a direct violation of the trust that I and others had placed in Jim
as we sent him our improvements, modifications, and bug fixes. I
am especially bothered by the general mercenary attitude surround-
ing EMACS which has taken over from the once proud ‘hacker’ ethic
—EMACS is a tool that can make all of our lives better. Let’s help it
to grow!”34

197writing copyright licenses

Labalme’s implication, though he may not even have realized
this himself, is that Gosling may have infringed on the rights of
others in selling the code to Unipress, as a separate message from
Joaquim Martillo makes clear: “The differences between current
version of Unipress EMACS and Gnu EMACS display.c (a 19 page
module) is about 80%. For all the modules which Fen LeBalme [sic]
gave RMS permission to use, the differences are similar. Unipress is
not even using the disputed software anymore! Now, these modules
contain code people like Chris Torek and others contributed when
Gosling’s emacs was in the public domain. I must wonder whether
these people would have contributed had they known their freely-
given code was going to become part of someone’s product.”35

Indeed, the general irony of this complicated situation was cer-
tainly not as evident as it might have been given the emotional
tone of the debates: Stallman was using code from Gosling based on
permission Gosling had given to Labalme, but Labalme had written
code for Gosling which Gosling had commercialized without telling
Labalme—conceivably, but not likely, the same code. Furthermore,
all of them were creating software that had been originally con-
ceived in large part by Stallman (but based on ideas and work on
TECO, an editor written twenty years before EMACS), who was
now busy rewriting the very software Gosling had rewritten for
UNIX. The “once proud hacker ethic” that Labalme mentions would
thus amount not so much to an explicit belief in sharing so much as
a fast-and-loose practice of making contributions and fixes without
documenting them, giving oral permission to use and reuse, and
“losing” records that may or may not have existed—hardly a noble
enterprise.

But by 27 June 1985, all of the legal discussion was rendered
moot when Stallman announced that he would completely rewrite
the display code in EMACS.

I have decided to replace the Gosling code in GNU EMACS, even
though I still believe Fen and I have permission to distribute that code,
in order to keep people’s confidence in the GNU project.

I came to this decision when I found, this night, that I saw how to
rewrite the parts that had seemed hard. I expect to have the job done
by the weekend.36

On 5 July, Stallman sent out a message that said:

198 writing copyright licenses

Celebrate our independence from Unipress!
EMACS version 16, 100% Gosling-free, is now being tested at sev-

eral places. It appears to work solidly on Vaxes, but some other ma-
chines have not been tested yet.37

The fact that it only took one week to create the code is a testa-
ment to Stallman’s widely recognized skills in creating great soft-
ware—it doesn’t appear to have indicated any (legal) threat or
urgency. Indeed, even though Unipress seems also to have been
concerned about their own reputation, and despite the implication
made by Stallman that they had forced this issue to happen, they
took a month to respond. At that point, the Unipress employee Mike
Gallaher wrote to insist, somewhat after the fact, that Unipress
had no intention of suing anyone—as long as they were using the
Gosling-free EMACS version 16 and higher.

UniPress has no quarrel with the Gnu project. It bothers me that peo-
ple seem to think we are trying to hinder it. In fact, we hardly did or
said much at all, except to point out that the Gnumacs code had James
Gosling’s copyright in it. We have not done anything to keep anyone
from using Gnumacs, nor do we intend to now that it is “Gosling-free”
(version 16.56).

You can consider this to be an official statement from UniPress:
There is nothing in Gnumacs version 16.56 that could possibly cause
UniPress to get upset. If you were afraid to use Gnumacs because
you thought we would hassle you, don’t be, on the basis of version
16.56.38

Both Stallman and Unipress received various attacks and de-
fenses from observers of the controversy. Many people pointed out
that Stallman should get credit for “inventing” EMACS and that the
issue of him infringing on his own invention was therefore ironic.
Others proclaimed the innocence and moral character of Unipress,
which, it was claimed, was providing more of a service (support for
EMACS) than the program itself.

Some readers interpreted the fact that Stallman had rewritten the
display code, whether under pressure from Unipress or not, as con-
firmation of the ideas expressed in “The GNU Manifesto,” namely,
that commercial software stifles innovation. According to this logic,
precisely because Stallman was forced to rewrite the code, rather
than build on something that he himself assumed he had permis-

199writing copyright licenses

sion to do, there was no innovation, only fear-induced caution.39
On the other hand, latent within this discussion is a deep sense of
propriety about what people had created; many people, not only
Stallman and Gosling and Zimmerman, had contributed to making
EMACS what it was, and most had done so under the assumption,
legally correct or not, that it would not be taken away from them
or, worse, that others might profit by it.

Gosling’s sale of EMACS is thus of a different order from his par-
ticipation in the common stewardship of EMACS. The distinction
between creating software and maintaining it is a commercial fic-
tion driven in large part by the structure of intellectual property. It
mirrors the experience of open systems. Maintaining software can
mean improving it, and improving it can mean incorporating the
original work and ideas of others. To do so by the rules of a chang-
ing intellectual-property structure forces different choices than to
do so according to an informal hacker ethic or an experimental
“commune.” One programmer’s minor improvement is another
programmer’s original contribution.

The Context of Copyright

The EMACS controversy occurred in a period just after some of the
largest changes to U.S. intellectual-property law in seventy years.
Two aspects of this context are worth emphasizing: (1) practices
and knowledge about the law change slowly and do not immedi-
ately reflect the change in either the law or the strategies of actors;
(2) U.S. law creates a structural form of uncertainty in which the
interplay between legislation and case law is never entirely cer-
tain. In the former aspect, programmers who grew up in the 1970s
saw a commercial practice entirely dominated by trade secret and
patent protection, and very rarely by copyright; thus, the shift to
widespread use of copyright law (facilitated by the 1976 and 1980
changes to the law) to protect software was a shift in thinking that
only slowly dawned on many participants, even the most legally
astute, since it was a general shift in strategy as well as a statu-
tory change. In the latter aspect, the 1976 and 1980 changes to the
copyright law contained a number of uncertainties that would take
over a decade to be worked out in case law, issues such as the copy-
rightability of software, the definition of software, and the meaning

200 writing copyright licenses

of infringement in software copyright, to say nothing of the impact
of the codification of fair use and the removal of the requirement to
register (issues that arguably went unnoticed until the turn of the
millennium). Both aspects set the stage for the EMACS controversy
and Stallman’s creation of the GPL.

Legally speaking, the EMACS controversy was about copyright,
permission, and the meanings of a public domain and the reuse of
software (and, though never explicitly mentioned, fair use). Soft-
ware patenting and trade-secret law are not directly concerned,
but they nonetheless form a background to the controversy. Many
of the participants expressed a legal and conventional orthodoxy
that software was not patentable, that is, that algorithms, ideas,
or fundamental equations fell outside the scope of patent, even
though the 1981 case Diamond v. Diehr is generally seen as the first
strong support by the courts for forcing the United States Patent
and Trademark Office to grant patents on software.40 Software,
this orthodoxy went, was better protected by trade-secret law (a
state-by-state law, not a federal statute), which provided protec-
tion for any intellectual property that an owner reasonably tried to
maintain as a secret. The trade-secret status of UNIX, for example,
meant that all the educational licensees who were given the source
code of UNIX had agreed to keep it secret, even though it was
manifestly circulating the world over; one could therefore run afoul
of trade-secret rules if one looked at the source code (e.g., signed a
nondisclosure license or was shown the code by an employee) and
then implemented something similar.

By contrast, copyright law was rarely deployed in matters of
software production. The first copyright registration of software
occurred in 1964, but the desirability of relying on copyright over
trade secret was uncertain well into the 1970s.41 Some corpora-
tions, like IBM, routinely marked all source code with a copyright
symbol. Others asserted it only on the binaries they distributed or
in the license agreements. The case of software on the UNIX op-
erating system and its derivatives is particularly haphazard, and
the existence of copyright notices by the authors varies widely. An
informal survey by Barry Gold singled out only James Gosling, Wal-
ter Tichy (author of rcs), and the RAND Corporation as having ad-
equately labeled source code with copyright notices.42 Gosling was
also the first to register EMACS as copyrighted software in 1983,

201writing copyright licenses

while Stallman registered GNU EMACS just after version 15.34 was
released in May 1985.43

The uncertainty of the change from reliance on trade secret to
reliance on copyright is clear in some of the statements made by
Stallman around the reuse of Gosling’s code. Since neither Stallman
nor Gosling sought to keep the program secret in any form—either
by licensing it or by requiring users to keep it secret—there could
be no claims of trade-secret status on either program. Nonetheless,
there was frequent concern about whether one had seen any code
(especially code from a UNIX operating system, which is covered
by trade secret) and whether code that someone else had seen,
rewritten, or distributed publicly was therefore “in the public do-
main.”44 But, at the same time, Stallman was concerned that rewrit-
ing Gosling’s display code would be too difficult: “Any display code
would have a considerable resemblance to that display code, just
by virtue of doing the same job. Without any clear idea of exactly
how much difference there would have to be to reassure you users,
I cannot tell whether the rewrite would accomplish that. The law is
not any guidance here. . . . Writing display code that is significantly
different is not easy.”45

Stallman’s strategy for rewriting software, including his plan for
the GNU operating system, also involved “not looking at” anyone
else’s code, so as to ensure that no trade-secret violations would
occur. Although it was clear that Gosling’s code was not a trade
secret, it was also not obvious that it was “in the public domain,”
an assumption that might be made about other kinds of software
protected by trade secret. Under trade-secret rules, Gosling’s public
distribution of GOSMACS appears to give the green light for its
reuse, but under copyright law, a law of strict liability, any unau-
thorized use is a violation, regardless of how public the software
may have been.46

The fact of trade-secret protection was nonetheless an important
aspect of the EMACS controversy: the version of EMACS that War-
ren Montgomery had created at Bell Labs (and on which Zimmer-
man’s CCA version would be based) was the subject of trade-secret
protection by AT&T, by virtue of being distributed with UNIX and
under a nondisclosure agreement. AT&T was at the time still a year
away from divestiture and thus unable to engage in commercial
exploitation of the software. When CCA sought to commercialize

202 writing copyright licenses

the version of UNIX Zimmerman had based on Montgomery’s, it
was necessary to remove any AT&T code in order to avoid violating
their trade-secret status. CCA in turn distributed their EMACS as ei-
ther binary or as source (the former costing about $1,000, the latter
as much as $7,000) and relied on copyright rather than trade-secret
protection to prevent unauthorized uses of their software.47

The uncertainty over copyright was thus in part a reflection of a
changing strategy in the computer-software industry, a kind of un-
even development in which copyright slowly and haphazardly came
to replace trade secret as the main form of intellectual-property
protection. This switch had consequences for how noncommercial
programmers, researchers, and amateurs might interpret their own
work, as well as for the companies whose lawyers were struggling
with the same issues. Of course, copyright and trade-secret protec-
tion are not mutually exclusive, but they structure the need for
secrecy in different ways, and they make different claims on issues
like similarity, reuse, and modification.

The 1976 changes to copyright law were therefore extremely sig-
nificant in setting out a new set of boundaries and possibilities for
intellectual-property arguments, arguments that created a different
kind of uncertainty from that of a changing commercial strategy: a
structural uncertainty created by the need for a case law to develop
around the statutory changes implemented by Congress.

The Copyright Act of 1976 introduced a number of changes that
had been some ten years in the making, largely organized around
new technologies like photocopier machines, home audiotaping,
and the new videocassette recorders. It codified fair-use rights, it
removed the requirement to register, and it expanded the scope of
copyrightable materials considerably. It did not, however, explic-
itly address software, an oversight that frustrated many in the com-
puter industry, in particular the young software industry. Pursuant
to this oversight, the National Commission on New Technological
Uses of Copyright (CONTU) was charged with making suggestions
for changes to the law with respect to software. It was therefore
only in 1980 that Congress implemented these changes, adding
software to title 17 of the U.S. copyright statute as something that
could be considered copyrightable by law.48

The 1980 amendment to the copyright law answered one of three
lingering questions about the copyrightability of software: the sim-
ple question of whether it was copyrightable material at all. Con-

203writing copyright licenses

gress answered yes. It did not, however, designate what constituted
“software.” During the 1980s, a series of court cases helped specify
what counted as software, including source code, object code (bina-
ries), screen display and output, look and feel, and microcode and
firmware.49 The final question, which the courts are still faced with
adjudicating, concerns how much similarity constitutes an infringe-
ment in each of these cases. The implications of the codification
of fair use and the requirement to register continue to unfold even
into the present.

The EMACS controversy confronts all three of these questions.
Stallman’s initial creation of EMACS was accomplished under con-
ditions in which it was unclear whether copyright would apply (i.e.,
before 1980). Stallman, of course, did not attempt to copyright the
earliest versions of EMACS, but the 1976 amendments removed
the requirement to register, thus rendering everything written af-
ter 1978 automatically copyrighted. Registration represented only
an additional effort to assert ownership in cases of suspected in-
fringement.

Throughout this period, the question of whether software was
copyrightable—or copyrighted—was being answered differently
in different cases: AT&T was relying on trade-secret status; Gos-
ling, Unipress, and CCA negotiated over copyrighted material; and
Stallman was experimenting with his “commune.” Although the
uncertainty was answered statutorily by the 1980 amendment,
not everyone instantly grasped this new fact or changed practices
based on it. There is ample evidence throughout the Usenet archive
that the 1976 changes were poorly understood, especially by com-
parison with the legal sophistication of hackers in the 1990s and
2000s. Although the law changed in 1980, practices changed more
slowly, and justifications crystallized in the context of experiments
like that of GNU EMACS.

Further, a tension emerged between the meaning of source code
and the meaning of software. On the one hand was the question of
whether the source code or the binary code was copyrightable, and
on the other was the question of defining the boundaries of software
in a context wherein all software relies on other software in order
to run at all. For instance, EMACS was originally built on top of
TECO, which was referred to both as an editor and as a program-
ming language; even seemingly obvious distinctions (e.g., applica-
tion vs. programming language) were not necessarily always clear.

204 writing copyright licenses

If EMACS was an application written in TECO qua programming
language, then it would seem that EMACS should have its own
copyright, distinct from any other program written in TECO. But
if EMACS was an extension or modification of TECO qua editor,
then it would seem that EMACS was a derivative work and would
require the explicit permission of the copyright holder.

Further, each version of EMACS, in order to be EMACS, needed
a LISP interpreter in order to make the extensible interface similar
across all versions. But not all versions used the same LISP inter-
preter. Gosling’s used an interpreter called MOCKLISP (mlisp in
the trademarked Unipress version), for instance. The question of
whether the LISP interpreter was a core component of the software
or an “environment” needed in order to extend the application was
thus also uncertain and unspecified in the law. While both might
be treated as software suitable for copyright protection, both might
also be understood as necessary components out of which copy-
rightable software would be built.50

What’s more, both the 1976 and 1980 amendments are silent
on the copyright status of source code vs. binary code. While all
the versions of EMACS were distributed in binary, Stallman and
Gosling both included the source to allow users to modify it and
extend it, but they differed on the proper form of redistribution. The
threshold between modifying software for oneself and copyright
infringement was not yet clear, and it hung on the meaning of
redistribution. Changing the software for use on a single computer
might be necessary to get it to run, but by the early days of the
Arpanet, innocently placing that code in a public directory on one
computer could look like mass distribution.51

Finally, the question of what constitutes infringement was at the
heart of this controversy and was not resolved by law or by legal
adjudication, but simply by rewriting the code to avoid the ques-
tion. Stallman’s use of Gosling’s code, his claim of third-hand per-
mission, the presence or absence of written permission, the sale
of GOSMACS to Unipress when it most likely contained code not
written by Gosling but copyrighted in his name—all of these is-
sues complicated the question of infringement to the point where
Stallman’s only feasible option for continuing to create software
was to avoid using anyone else’s code at all. Indeed, Stallman’s
decision to use Gosling’s code (which he claims to have changed in
significant portions) might have come to nothing if he had unethi-

205writing copyright licenses

cally and illegally chosen not to include the copyright notice at all
(under the theory that the code was original to Stallman, or an
imitation, rather than a portion of Gosling’s work). Indeed, Chris
Torek received Gosling’s permission to remove Gosling’s name and
copyright from the version of display.c he had heavily modified,
but he chose not to omit them: “The only reason I didn’t do so is
that I feel that he should certainly be credited as the inspiration (at
the very least) for the code.”52 Likewise, Stallman was most likely
concerned to obey the law and to give credit where credit was due,
and therefore left the copyright notice attached—a clear case of
blurred meanings of authorship and ownership.

In short, the interplay between new statutes and their settlement
in court or in practice was a structural uncertainty that set novel
constraints on the meaning of copyright, and especially on the
norms and forms of permission and reuse. GNU EMACS 15.34 was
the safest option—a completely new version that performed the
same tasks, but in a different manner, using different algorithms
and code.

Even as it resolved the controversy, however, GNU EMACS posed
new problems for Stallman: how would the EMACS commune sur-
vive if it wasn’t clear whether one could legally use another person’s
code, even if freely contributed? Was Gosling’s action in selling
work by others to Unipress legitimate? Would Stallman be able to
enforce its opposite, namely, prevent people from commercializing
EMACS code they contributed to him? How would Stallman avoid
the future possibility of his own volunteers and contributors later
asserting that he had infringed on their copyright?

By 1986, Stallman was sending out a letter that recorded the for-
mal transfer of copyright to the Free Software Foundation (which
he had founded in late 1985), with equal rights to nonexclusive
use of the software.53 While such a demand for the expropriation
of copyright might seem contrary to the aims of the GNU project,
in the context of the unfolding copyright law and the GOSMACS
controversy it made perfect sense. Having been accused himself of
not having proper permission to use someone else’s copyrighted
material in his free version of GNU EMACS, Stallman took steps to
forestall such an event in the future.

The interplay between technical and legal issues and “ethical”
concerns was reflected in the practical issues of fear, intimidation,
and common-sense (mis)understandings of intellectual-property

206 writing copyright licenses

law. Zimmerman’s veiled threats of legal liability were directed
not only at Stallman but at anyone who was using the program
Stallman had written; breaking the law was, for Zimmerman, an
ethical lapse, not a problem of uncertainty and change. Whether or
not such an interpretation of the law was correct, it did reveal the
mechanisms whereby a low level of detailed knowledge about the
law—and a law in flux, at that (not to mention the litigious reputa-
tion of the U.S. legal system worldwide)—often seemed to justify
a sense that buying software was simply a less risky option than
acquiring it for free. Businesses, not customers, it was assumed,
would be liable for such infringements. By the same token, the sud-
den concern of software programmers (rather than lawyers) with
the detailed mechanics of copyright law meant that a very large
number of people found themselves asserting common-sense no-
tions, only to be involved in a flame war over what the copyright
law “actually says.”

Such discussion has continued and grown exponentially over the
last twenty years, to the point that Free Software hackers are now
nearly as deeply educated about intellectual property law as they
are about software code.54 Far from representing the triumph of the
hacker ethic, the GNU General Public License represents the con-
crete, tangible outcome of a relatively wide-ranging cultural con-
versation hemmed in by changing laws, court decisions, practices
both commercial and academic, and experiments with the limits
and forms of new media and new technology.

Conclusion

The rest of the story is quickly told: Stallman resigned from the AI
Lab at MIT and started the Free Software Foundation in 1985; he
created a raft of new tools, but ultimately no full UNIX operating
system, and issued General Public License 1.0 in 1989. In 1990
he was awarded a MacArthur “genius grant.” During the 1990s,
he was involved in various high-profile battles among a new gen-
eration of hackers; those controversies included the debate around
Linus Torvalds’s creation of Linux (which Stallman insisted be re-
ferred to as GNU/Linux), the forking of EMACS into Xemacs, and
Stallman’s own participation in—and exclusion from—conferences
and events devoted to Free Software.

207writing copyright licenses

Between 1986 and 1990, the Free Software Foundation and its
software became extremely well known among geeks. Much of this
had to do with the wealth of software that they produced and dis-
tributed via Usenet and Arpanet. And as the software circulated
and was refined, so were the new legal constraints and the process
of teaching users to understand what they could and could not do
with the software—and why it was not in the public domain.

Each time a new piece of software was released, it was accompa-
nied by one or more text files which explained what its legal status
was. At first, there was a file called DISTRIB, which contained an
explanation of the rights the new owner had to modify and redis-
tribute the software.55 DISTRIB referenced a file called COPYING,
which contained the “GNU EMACS copying permission notice,”
also known as the GNU EMACS GPL. The first of these licenses
listed the copyright holder as Richard Stallman (in 1985), but by
1986 all licenses referred to the Free Software Foundation as the
copyright holder.

As the Free Software Foundation released other pieces of soft-
ware, the license was renamed—GNU CC GPL, a GNU Bison GPL,
a GNU GDB GPL, and so on, all of which were essentially the same
terms—in a file called COPYING, which was meant to be distrib-
uted along with the software. In 1988, after the software and the
licenses had become considerably more widely available, Stallman
made a few changes to the license that relaxed some of the terms
and specified others.56 This new version would become the GNU
GPL 1.0. By the time Free Software emerged into the public con-
sciousness in the late 1990s, the GPL had reached version 2.0, and
the Free Software Foundation had its own legal staff.

The creation of the GPL and the Free Software Foundation are
often understood as expressions of the hacker ethic, or of Stallman’s
ideological commitment to freedom. But the story of EMACS and
the complex technical and legal details that structure it illustrate
how the GPL is more than just a hack: it was a novel, privately
ordered legal “commune.” It was a space thoroughly independent
of, but insinuated into the existing bedrock of rules and practices of
the world of corporate and university software, and carved out of
the slippery, changing substance of intellectual-property statutes.
At a time when the giants of the software industry were fighting to
create a different kind of openness—one that preserved and would
even strengthen existing relations of intellectual property—this

208 writing copyright licenses

hack was a radical alternative that emphasized the sovereignty
not of a national or corporate status quo, but of self-fashioning
individuals who sought to opt out of that national-corporate unity.
The creation of the GNU GPL was not a return to a golden age of
small-scale communities freed from the dominating structures of
bureaucratic modernity, but the creation of something new out
of those structures. It relied on and emphasized, not their destruction,
but their stability—at least until they are no longer necessary.

The significance of the GPL is due to its embedding within and
emergence from the legal and technical infrastructure. Such a prac-
tice of situated reworking is what gives Free Software—and per-
haps all forms of engineering and creative practice—its warp and
weft. Stallman’s decision to resign from the AI Lab and start the
Free Software Foundation is a good example; it allowed Stallman
no only to devote energy to Free Software but also to formally dif-
ferentiate the organizations, to forestall at least the potential threat
that MIT (which still provided him with office space, equipment,
and network connection) might decide to claim ownership over his
work. One might think that the hacker ethic and the image of self-
determining free individuals would demand the total absence of
organizations, but it requires instead their proliferation and modu-
lation. Stallman himself was never so purely free: he relied on the
largesse of MIT’s AI Lab, without which he would have had no
office, no computer, no connection to the network, and indeed, for
a while, no home.

The Free Software Foundation represents a recognition on his
part that individual and communal independence would come at
the price of a legally and bureaucratically recognizable entity, set
apart from MIT and responsible only to itself. The Free Software
Foundation took a classic form: a nonprofit organization with a
hierarchy. But by the early 1990s, a new set of experiments would
begin that questioned the look of such an entity. The stories of
Linux and Apache reveal how these ventures both depended on the
work of the Free Software Foundation and departed from the hier-
archical tradition it represented, in order to innovate new similarly
embedded sociotechnical forms of coordination.

The EMACS text editor is still widely used, in version 22.1 as of
2007, and ported to just about every conceivable operating system.
The controversy with Unipress has faded into the distance, as newer
and more intense controversies have faced Stallman and Free Soft-

209writing copyright licenses

ware, but the GPL has become the most widely used and most finely
scrutinized of the legal licenses. More important, the EMACS con-
troversy was by no means the only one to have erupted in the lives
of software programmers; indeed, it has become virtually a rite of
passage for young geeks to be involved in such debates, because it
is the only way in which the technical details and the legal details
that confront geeks can be explored in the requisite detail. Not all
such arguments end in the complete rewriting of source code, and
today many of them concern the attempt to convince or evangelize
for the release of source code under a Free Software license. The
EMACS controversy was in some ways a primal scene—a traumatic
one, for sure—that determined the outcome of many subsequent
fights by giving form to the Free Software license and its uses.

7. Coordinating Collaborations

The final component of Free Software is coordination. For many
participants and observers, this is the central innovation and es-
sential significance of Open Source: the possibility of enticing po-
tentially huge numbers of volunteers to work freely on a software
project, leveraging the law of large numbers, “peer production,”
“gift economies,” and “self-organizing social economies.”1 Coordi-
nation in Free Software is of a distinct kind that emerged in the
1990s, directly out of the issues of sharing source code, conceiving
open systems, and writing copyright licenses—all necessary precur-
sors to the practices of coordination. The stories surrounding these
issues find continuation in those of the Linux operating-system ker-
nel, of the Apache Web server, and of Source Code Management
tools (SCMs); together these stories reveal how coordination worked
and what it looked like in the 1990s.

Coordination is important because it collapses and resolves the
distinction between technical and social forms into a meaningful

211coordinating collaborations

whole for participants. On the one hand, there is the coordination
and management of people; on the other, there is the coordination of
source code, patches, fixes, bug reports, versions, and distributions—
but together there is a meaningful technosocial practice of manag-
ing, decision-making, and accounting that leads to the collaborative
production of complex software and networks. Such coordination
would be unexceptional, essentially mimicking long-familiar cor-
porate practices of engineering, except for one key fact: it has no
goals. Coordination in Free Software privileges adaptability over
planning. This involves more than simply allowing any kind of mod-
ification; the structure of Free Software coordination actually gives
precedence to a generalized openness to change, rather than to the
following of shared plans, goals, or ideals dictated or controlled by
a hierarchy of individuals.2

Adaptability does not mean randomness or anarchy, however;
it is a very specific way of resolving the tension between the indi-
vidual curiosity and virtuosity of hackers, and the collective coordi-
nation necessary to create and use complex software and networks.
No man is an island, but no archipelago is a nation, so to speak.
Adaptability preserves the “joy” and “fun” of programming with-
out sacrificing the careful engineering of a stable product. Linux
and Apache should be understood as the results of this kind of co-
ordination: experiments with adaptability that have worked, to
the surprise of many who have insisted that complexity requires
planning and hierarchy. Goals and planning are the province of
governance—the practice of goal-setting, orientation, and defini-
tion of control—but adaptability is the province of critique, and this
is why Free Software is a recursive public: it stands outside power
and offers powerful criticism in the form of working alternatives.
It is not the domain of the new—after all Linux is just a rewrite of
UNIX—but the domain of critical and responsive public direction
of a collective undertaking.

Linux and Apache are more than pieces of software; they are
organizations of an unfamiliar kind. My claim that they are “re-
cursive publics” is useful insofar as it gives a name to a practice
that is neither corporate nor academic, neither profit nor nonprofit,
neither governmental nor nongovernmental. The concept of recur-
sive public includes, within the spectrum of political activity, the
creation, modification, and maintenance of software, networks,
and legal documents. While a “public” in most theories is a body of

212 coordinating collaborations

people and a discourse that give expressive form to some concern,
“recursive public” is meant to suggest that geeks not only give ex-
pressive form to some set of concerns (e.g., that software should
be free or that intellectual property rights are too expansive) but
also give concrete infrastructural form to the means of expression
itself. Linux and Apache are tools for creating networks by which
expression of new kinds can be guaranteed and by which further
infrastructural experimentation can be pursued. For geeks, hack-
ing and programming are variants of free speech and freedom of
assembly.

From UNIX to Minix to Linux

Linux and Apache are the two paradigmatic cases of Free Soft-
ware in the 1990s, both for hackers and for scholars of Free Soft-
ware. Linux is a UNIX-like operating-system kernel, bootstrapped
out of the Minix operating system created by Andrew Tanenbaum.3
Apache is the continuation of the original National Center for Su-
percomputing Applications (NCSA) project to create a Web server
(Rob McCool’s original program, called httpd), bootstrapped out of
a distributed collection of people who were using and improving
that software.

Linux and Apache are both experiments in coordination. Both
projects evolved decision-making systems through experiment: a vot-
ing system in Apache’s case and a structured hierarchy of decision-
makers, with Linus Torvalds as benevolent dictator, in Linux’s case.
Both projects also explored novel technical tools for coordination,
especially Source Code Management (SCM) tools such as Concur-
rent Versioning System (cvs). Both are also cited as exemplars of
how “fun,” “joy,” or interest determine individual participation and
of how it is possible to maintain and encourage that participation
and mutual aid instead of narrowing the focus or eliminating pos-
sible routes for participation.

Beyond these specific experiments, the stories of Linux and Apache
are detailed here because both projects were actively central to the
construction and expansion of the Internet of the 1990s by allow-
ing a massive number of both corporate and noncorporate sites to
cheaply install and run servers on the Internet. Were Linux and
Apache nothing more than hobbyist projects with a few thousand

213coordinating collaborations

interested tinkerers, rather than the core technical components of
an emerging planetary network, they would probably not represent
the same kind of revolutionary transformation ultimately branded
a “movement” in 1998–99.

Linus Torvalds’s creation of the Linux kernel is often cited as the
first instance of the real “Open Source” development model, and it
has quickly become the most studied of the Free Software projects.4
Following its appearance in late 1991, Linux grew quickly from a
small, barely working kernel to a fully functional replacement for
the various commercial UNIX systems that had resulted from the
UNIX wars of the 1980s. It has become versatile enough to be used
on desktop PCs with very little memory and small CPUs, as well as
in “clusters” that allow for massively parallel computing power.

When Torvalds started, he was blessed with an eager audience of
hackers keen on seeing a UNIX system run on desktop computers
and a personal style of encouragement that produced enormous pos-
itive feedback. Torvalds is often given credit for creating, through
his “management style,” a “new generation” of Free Software—
a younger generation than that of Stallman and Raymond. Linus
and Linux are not in fact the causes of this change, but the results
of being at the right place at the right time and joining together
a number of existing components. Indeed, the title of Torvalds’s
semi-autobiographical reflection on Linux—Just for Fun: The Story
of an Accidental Revolutionary—captures some of the character of
its genesis.

The “fun” referred to in the title reflects the privileging of adapt-
ability over planning. Projects, tools, people, and code that were
fun were those that were not dictated by existing rules and ideas.
Fun, for geeks, was associated with the sudden availability, espe-
cially for university students and amateur hackers, of a rapidly ex-
panding underground world of networks and software—Usenet and
the Internet especially, but also university-specific networks, online
environments and games, and tools for navigating information of
all kinds. Much of this activity occurred without the benefit of any
explicit theorization, with the possible exception of the discourse of
“community” (given print expression by Howard Rheingold in 1993
and present in nascent form in the pages of Wired and Mondo 2000)
that took place through much of the 1990s.5 The late 1980s and
early 1990s gave rise to vast experimentation with the collaborative
possibilities of the Internet as a medium. Particularly attractive was

214 coordinating collaborations

that this medium was built using freely available tools, and the tools
themselves were open to modification and creative reuse. It was
a style that reflected the quasi-academic and quasi-commercial
environment, of which the UNIX operating system was an exemplar—
 not pure research divorced from commercial context, nor entirely
the domain of commercial rapacity and intellectual property.

Fun included the creation of mailing lists by the spread of software
such as list-serv and majordomo; the collaborative maintenance
and policing of Usenet; and the creation of Multi-User Dungeons
(MUDs) and MUD Object Orienteds (MOOs), both of which gave
game players and Internet geeks a way to co-create software envi-
ronments and discover many of the problems of management and
policing that thereby emerged.6 It also included the increasing array
of “information services” that were built on top of the Internet, like
archie, gopher, Veronica, WAIS, ftp, IRC—all of which were neces-
sary to access the growing information wealth of the underground
community lurking on the Internet. The meaning and practice of
coordination in all of these projects was up for grabs: some were
organized strictly as university research projects (gopher), while
others were more fluid and open to participation and even control
by contributing members (MOOs and MUDs). Licensing issues were
explicit in some, unclear in some, and completely ignored in others.
Some projects had autocratic leaders, while others experimented
with everything from representative democracy to anarchism.

During this period (roughly 1987 to 1993), the Free Software
Foundation attained a mythic cult status—primarily among UNIX
and EMACS users. Part of this status was due to the superiority of
the tools Stallman and his collaborators had already created: the
GNU C Compiler (gcc), GNU EMACS, the GNU Debugger (gdb),
GNU Bison, and loads of smaller utilities that replaced the original
AT&T UNIX versions. The GNU GPL had also acquired a life of its
own by this time, having reached maturity as a license and become
the de facto choice for those committed to Free Software and the
Free Software Foundation. By 1991, however, the rumors of the
imminent appearance of Stallman’s replacement UNIX operating
system had started to sound empty—it had been six years since his
public announcement of his intention. Most hackers were skeptical
of Stallman’s operating-system project, even if they acknowledged
the success of all the other tools necessary to create a full-fledged
operating system, and Stallman himself was stymied by the devel-

215coordinating collaborations

opment of one particular component: the kernel itself, called GNU
Hurd.

Linus Torvalds’s project was not initially imagined as a contribu-
tion to the Free Software Foundation: it was a Helsinki university
student’s late-night project in learning the ins and outs of the rela-
tively new Intel 386/486 microprocessor. Torvalds, along with tens
of thousands of other computer-science students, was being schooled
in UNIX through the pedagogy of Andrew Tanenbaum’s Minix, Doug-
las Comer’s Xinu-PC, and a handful of other such teaching versions
designed to run on IBM PCs. Along with the classroom pedagogy
in the 1980s came the inevitable connection to, lurking on, and
posting to the Usenet and Arpanet mailing lists devoted to techni-
cal (and nontechnical) topics of all sorts.7 Torvalds was subscribed,
naturally, to comp.os.minix, the newsgroup for users of Minix.

The fact of Linus Torvalds’s pedagogical embedding in the world
of UNIX, Minix, the Free Software Foundation, and the Usenet
should not be underestimated, as it often is in hagiographical ac-
counts of the Linux operating system. Without this relatively robust
moral-technical order or infrastructure within which it was possible
to be at the right place at the right time, Torvalds’s late-night dorm-
room project would have amounted to little more than that—but
the pieces were all in place for his modest goals to be transformed
into something much more significant.

Consider his announcement on 25 August 1991:

Hello everybody out there using minix—I’m doing a (free) operat-
ing system (just a hobby, won’t be big and professional like gnu) for
386(486) AT clones. This has been brewing since april, and is starting
to get ready. I’d like any feedback on things people like/dislike in
minix, as my OS resembles it somewhat (same physical layout of the
file-system (due to practical reasons) among other things). I’ve cur-
rently ported bash(1.08) and gcc(1.40), and things seem to work. This
implies that I’ll get something practical within a few months, and I’d
like to know what features most people would want. Any suggestions
are welcome, but I won’t promise I’ll implement them :-)

Linus . . .
PS. Yes—it’s free of any minix code, and it has a multi-threaded

fs. It is NOT portable (uses 386 task switching etc), and it probably
never will support anything other than AT-harddisks, as that’s all I
have :-(.8

216 coordinating collaborations

Torvalds’s announcement is telling as to where his project fit into
the existing context: “just a hobby,” not “big and professional like
gnu” (a comment that suggests the stature that Stallman and the
Free Software Foundation had achieved, especially since they were
in reality anything but “big and professional”). The announcement
was posted to the Minix list and thus was essentially directed at
Minix users; but Torvalds also makes a point of insisting that the
system would be free of cost, and his postscript furthermore indi-
cates that it would be free of Minix code, just as Minix had been
free of AT&T code.

Torvalds also mentions that he has ported “bash” and “gcc,”
software created and distributed by the Free Software Foundation
and tools essential for interacting with the computer and compiling
new versions of the kernel. Torvalds’s decision to use these utili-
ties, rather than write his own, reflects both the boundaries of his
project (an operating-system kernel) and his satisfaction with the
availability and reusability of software licensed under the GPL.

So the system is based on Minix, just as Minix had been based on
UNIX—piggy-backed or bootstrapped, rather than rewritten in an
entirely different fashion, that is, rather than becoming a different
kind of operating system. And yet there are clearly concerns about
the need to create something that is not Minix, rather than simply
extending or “debugging” Minix. This concern is key to understand-
ing what happened to Linux in 1991.

Tanenbaum’s Minix, since its inception in 1984, was always
intended to allow students to see and change the source code of
Minix in order to learn how an operating system worked, but it
was not Free Software. It was copyrighted and owned by Pren-
tice Hall, which distributed the textbooks. Tanenbaum made the
case—similar to Gosling’s case for Unipress—that Prentice Hall was
distributing the system far wider than if it were available only on
the Internet: “A point which I don’t think everyone appreciates is
that making something available by FTP is not necessarily the way
to provide the widest distribution. The Internet is still a highly elite
group. Most computer users are NOT on it. . . . MINIX is also widely
used in Eastern Europe, Japan, Israel, South America, etc. Most
of these people would never have gotten it if there hadn’t been a
company selling it.”9

By all accounts, Prentice Hall was not restrictive in its sublicensing
of the operating system, if people wanted to create an “enhanced”

217coordinating collaborations

version of Minix. Similarly, Tanenbaum’s frequent presence on
comp.os.minix testified to his commitment to sharing his knowl-
edge about the system with anyone who wanted it—not just paying
customers. Nonetheless, Torvalds’s pointed use of the word free and
his decision not to reuse any of the code is a clear indication of his
desire to build a system completely unencumbered by restrictions,
based perhaps on a kind of intuitive folkloric sense of the dangers
associated with cases like that of EMACS.10

The most significant aspect of Torvalds’s initial message, how-
ever, is his request: “I’d like to know what features most people
would want. Any suggestions are welcome, but I won’t promise
I’ll implement them.” Torvalds’s announcement and the subsequent
interest it generated clearly reveal the issues of coordination and
organization that would come to be a feature of Linux. The reason
Torvalds had so many eager contributors to Linux, from the very
start, was because he enthusiastically took them off of Tanenbaum’s
hands.

Design and Adaptability

Tanenbaum’s role in the story of Linux is usually that of the straw
man—a crotchety old computer-science professor who opposes the
revolutionary young Torvalds. Tanenbaum did have a certain revo-
lutionary reputation himself, since Minix was used in classrooms
around the world and could be installed on IBM PCs (something
no other commercial UNIX vendors had achieved), but he was also
a natural target for people like Torvalds: the tenured professor es-
pousing the textbook version of an operating system. So, despite the
fact that a very large number of people were using or knew of Minix
as a UNIX operating system (estimates of comp.os.minix subscrib-
ers were at 40,000), Tanenbaum was emphatically not interested in
collaboration or collaborative debugging, especially if debugging
also meant creating extensions and adding features that would
make the system bigger and harder to use as a stripped-down tool
for teaching. For Tanenbaum, this point was central: “I’ve been
repeatedly offered virtual memory, paging, symbolic links, window
systems, and all manner of features. I have usually declined be-
cause I am still trying to keep the system simple enough for students
to understand. You can put all this stuff in your version, but I won’t

218 coordinating collaborations

put it in mine. I think it is this point which irks the people who say
‘MINIX is not free,’ not the $60.”11

So while Tanenbaum was in sympathy with the Free Software
Foundation’s goals (insofar as he clearly wanted people to be able
to use, update, enhance, and learn from software), he was not in
sympathy with the idea of having 40,000 strangers make his soft-
ware “better.” Or, to put it differently, the goals of Minix remained
those of a researcher and a textbook author: to be useful in class-
rooms and cheap enough to be widely available and usable on the
largest number of cheap computers.

By contrast, Torvalds’s “fun” project had no goals. Being a cocky
nineteen-year-old student with little better to do (no textbooks to
write, no students, grants, research projects, or committee meet-
ings), Torvalds was keen to accept all the ready-made help he could
find to make his project better. And with 40,000 Minix users, he
had a more or less instant set of contributors. Stallman’s audience
for EMACS in the early 1980s, by contrast, was limited to about a
hundred distinct computers, which may have translated into thou-
sands, but certainly not tens of thousands of users. Tanenbaum’s
work in creating a generation of students who not only understood
the internals of an operating system but, more specifically, under-
stood the internals of the UNIX operating system created a huge
pool of competent and eager UNIX hackers. It was the work of port-
ing UNIX not only to various machines but to a generation of minds
as well that set the stage for this event—and this is an essential,
though often overlooked component of the success of Linux.

Many accounts of the Linux story focus on the fight between
Torvalds and Tanenbaum, a fight carried out on comp.os.minix
with the subject line “Linux is obsolete.”12 Tanenbaum argued that
Torvalds was reinventing the wheel, writing an operating system
that, as far as the state of the art was concerned, was now obsolete.
Torvalds, by contrast, asserted that it was better to make something
quick and dirty that worked, invite contributions, and worry about
making it state of the art later. Far from illustrating some kind of
outmoded conservatism on Tanenbaum’s part, the debate highlights
the distinction between forms of coordination and the meanings
of collaboration. For Tanenbaum, the goals of Minix were either
pedagogical or academic: to teach operating-system essentials or to
explore new possibilities in operating-system design. By this model,
Linux could do neither; it couldn’t be used in the classroom because

219coordinating collaborations

it would quickly become too complex and feature-laden to teach,
and it wasn’t pushing the boundaries of research because it was an
out-of-date operating system. Torvalds, by contrast, had no goals.
What drove his progress was a commitment to fun and to a largely
inarticulate notion of what interested him and others, defined at
the outset almost entirely against Minix and other free operating
systems, like FreeBSD. In this sense, it could only emerge out of the
context—which set the constraints on its design—of UNIX, open
systems, Minix, GNU, and BSD.

Both Tanenbaum and Torvalds operated under a model of coordi-
nation in which one person was ultimately responsible for the entire
project: Tanenbaum oversaw Minix and ensured that it remained
true to its goals of serving a pedagogical audience; Torvalds would
oversee Linux, but he would incorporate as many different features
as users wanted or could contribute. Very quickly—with a pool of
40,000 potential contributors—Torvalds would be in the same po-
sition Tanenbaum was in, that is, forced to make decisions about
the goals of Linux and about which enhancements would go into it
and which would not. What makes the story of Linux so interesting
to observers is that it appears that Torvalds made no decision: he
accepted almost everything.

Tanenbaum’s goals and plans for Minix were clear and auto-
cratically formed. Control, hierarchy, and restriction are after all
appropriate in the classroom. But Torvalds wanted to do more.
He wanted to go on learning and to try out alternatives, and with
Minix as the only widely available way to do so, his decision to
part ways starts to make sense; clearly he was not alone in his
desire to explore and extend what he had learned. Nonetheless,
Torvalds faced the problem of coordinating a new project and mak-
ing similar decisions about its direction. On this point, Linux has
been the subject of much reflection by both insiders and outsiders.
Despite images of Linux as either an anarchic bazaar or an auto-
cratic dictatorship, the reality is more subtle: it includes a hierar-
chy of contributors, maintainers, and “trusted lieutenants” and a
sophisticated, informal, and intuitive sense of “good taste” gained
through reading and incorporating the work of co-developers.

While it was possible for Torvalds to remain in charge as an
individual for the first few years of Linux (1991–95, roughly), he
eventually began to delegate some of that control to people who
would make decisions about different subcomponents of the kernel.

220 coordinating collaborations

It was thus possible to incorporate more of the “patches” (pieces of
code) contributed by volunteers, by distributing some of the work of
evaluating them to people other than Torvalds. This informal hier-
archy slowly developed into a formal one, as Steven Weber points
out: “The final de facto ‘grant’ of authority came when Torvalds
began publicly to reroute relevant submissions to the lieutenants.
In 1996 the decision structure became more formal with an explicit
differentiation between ‘credited developers’ and ‘maintainers.’ . . .
If this sounds very much like a hierarchical decision structure, that
is because it is one—albeit one in which participation is strictly
voluntary.”13

Almost all of the decisions made by Torvalds and lieutenants were
of a single kind: whether or not to incorporate a piece of code sub-
mitted by a volunteer. Each such decision was technically complex:
insert the code, recompile the kernel, test to see if it works or if it
produces any bugs, decide whether it is worth keeping, issue a new
version with a log of the changes that were made. Although the var-
ious official leaders were given the authority to make such changes,
coordination was still technically informal. Since they were all work-
ing on the same complex technical object, one person (Torvalds)
ultimately needed to verify a final version, containing all the sub-
parts, in order to make sure that it worked without breaking.

Such decisions had very little to do with any kind of design goals
or plans, only with whether the submitted patch “worked,” a term
that reflects at once technical, aesthetic, legal, and design criteria
that are not explicitly recorded anywhere in the project—hence,
the privileging of adaptability over planning. At no point were the
patches assigned or solicited, although Torvalds is justly famous for
encouraging people to work on particular problems, but only if they
wanted to. As a result, the system morphed in subtle, unexpected
ways, diverging from its original, supposedly backwards “mono-
lithic” design and into a novel configuration that reflected the in-
terests of the volunteers and the implicit criteria of the leaders.

By 1995–96, Torvalds and lieutenants faced considerable chal-
lenges with regard to hierarchy and decision-making, as the project
had grown in size and complexity. The first widely remembered
response to the ongoing crisis of benevolent dictatorship in Linux
was the creation of “loadable kernel modules,” conceived as a way
to release some of the constant pressure to decide which patches
would be incorporated into the kernel. The decision to modularize

221coordinating collaborations

Linux was simultaneously technical and social: the software-code
base would be rewritten to allow for external loadable modules to
be inserted “on the fly,” rather than all being compiled into one
large binary chunk; at the same time, it meant that the responsi-
bility to ensure that the modules worked devolved from Torvalds
to the creator of the module. The decision repudiated Torvalds’s
early opposition to Tanenbaum in the “monolithic vs. microkernel”
debate by inviting contributors to separate core from peripheral
functions of an operating system (though the Linux kernel remains
monolithic compared to classic microkernels). It also allowed for a
significant proliferation of new ideas and related projects. It both
contracted and distributed the hierarchy; now Linus was in charge
of a tighter project, but more people could work with him accord-
ing to structured technical and social rules of responsibility.

Creating loadable modules changed the look of Linux, but not
because of any planning or design decisions set out in advance. The
choice is an example of the privileged adaptability of the Linux, re-
solving the tension between the curiosity and virtuosity of individ-
ual contributors to the project and the need for hierarchical control
in order to manage complexity. The commitment to adaptability
dissolves the distinction between the technical means of coordina-
tion and the social means of management. It is about producing a
meaningful whole by which both people and code can be coordi-
nated—an achievement vigorously defended by kernel hackers.

The adaptable organization and structure of Linux is often de-
scribed in evolutionary terms, as something without teleological
purpose, but responding to an environment. Indeed, Torvalds him-
self has a weakness for this kind of explanation.

Let’s just be honest, and admit that it [Linux] wasn’t designed.
Sure, there’s design too—the design of UNIX made a scaffolding for

the system, and more importantly it made it easier for people to com-
municate because people had a mental model for what the system was
like, which means that it’s much easier to discuss changes.

But that’s like saying that you know that you’re going to build a
car with four wheels and headlights—it’s true, but the real bitch is in
the details.

And I know better than most that what I envisioned 10 years ago
has nothing in common with what Linux is today. There was certainly
no premeditated design there.14

222 coordinating collaborations

Adaptability does not answer the questions of intelligent design.
Why, for example, does a car have four wheels and two headlights?
Often these discussions are polarized: either technical objects are
designed, or they are the result of random mutations. What this
opposition overlooks is the fact that design and the coordination of
collaboration go hand in hand; one reveals the limits and possibili-
ties of the other. Linux represents a particular example of such a
problematic—one that has become the paradigmatic case of Free
Software—but there have been many others, including UNIX, for
which the engineers created a system that reflected the distributed
collaboration of users around the world even as the lawyers tried
to make it conform to legal rules about licensing and practical con-
cerns about bookkeeping and support.

Because it privileges adaptability over planning, Linux is a re-
cursive public: operating systems and social systems. It privileges
openness to new directions, at every level. It privileges the right to
propose changes by actually creating them and trying to convince
others to use and incorporate them. It privileges the right to fork
the software into new and different kinds of systems. Given what
it privileges, Linux ends up evolving differently than do systems
whose life and design are constrained by corporate organization,
or by strict engineering design principles, or by legal or marketing
definitions of products—in short, by clear goals. What makes this
distinction between the goal-oriented design principle and the prin-
ciple of adaptability important is its relationship to politics. Goals
and planning are the subject of negotiation and consensus, or of
autocratic decision-making; adaptability is the province of critique.
It should be remembered that Linux is by no means an attempt to
create something radically new; it is a rewrite of a UNIX operating
system, as Torvalds points out, but one that through adaptation can
end up becoming something new.

Patch and Vote

The Apache Web server and the Apache Group (now called the
Apache Software Foundation) provide a second illuminating ex-
ample of the how and why of coordination in Free Software of the
1990s. As with the case of Linux, the development of the Apache
project illustrates how adaptability is privileged over planning

223coordinating collaborations

and, in particular, how this privileging is intended to resolve the
tensions between individual curiosity and virtuosity and collective
control and decision-making. It is also the story of the progres-
sive evolution of coordination, the simultaneously technical and
social mechanisms of coordinating people and code, patches and
votes.

The Apache project emerged out of a group of users of the origi-
nal httpd (HyperText Transmission Protocol Daemon) Web server
created by Rob McCool at NCSA, based on the work of Tim Berners-
Lee’s World Wide Web project at CERN. Berners-Lee had written
a specification for the World Wide Web that included the mark-up
language HTML, the transmission protocol http, and a set of librar-
ies that implemented the code known as libwww, which he had
dedicated to the public domain.15

The NCSA, at the University of Illinois, Urbana-Champaign,
picked up both www projects, subsequently creating both the first
widely used browser, Mosaic, directed by Marc Andreessen, and
httpd. Httpd was public domain up until version 1.3. Development
slowed when McCool was lured to Netscape, along with the team
that created Mosaic. By early 1994, when the World Wide Web
had started to spread, many individuals and groups ran Web serv-
ers that used httpd; some of them had created extensions and fixed
bugs. They ranged from university researchers to corporations like
Wired Ventures, which launched the online version of its maga-
zine (HotWired.com) in 1994. Most users communicated primar-
ily through Usenet, on the comp.infosystems.www.* newsgroups,
sharing experiences, instructions, and updates in the same manner
as other software projects stretching back to the beginning of the
Usenet and Arpanet newsgroups.

When NCSA failed to respond to most of the fixes and extensions
being proposed, a group of several of the most active users of httpd
began to communicate via a mailing list called new-httpd in 1995.
The list was maintained by Brian Behlendorf, the webmaster for
HotWired, on a server he maintained called hyperreal; its partici-
pants were those who had debugged httpd, created extensions, or
added functionality. The list was the primary means of associa-
tion and communication for a diverse group of people from vari-
ous locations around the world. During the next year, participants
hashed out issues related to coordination, to the identity of and the
processes involved in patching the “new” httpd, version 1.3.16

224 coordinating collaborations

Patching a piece of software is a peculiar activity, akin to debug-
ging, but more like a form of ex post facto design. Patching covers
the spectrum of changes that can be made: from fixing security
holes and bugs that prevent the software from compiling to feature
and performance enhancements. A great number of the patches
that initially drew this group together grew out of needs that each
individual member had in making a Web server function. These
patches were not due to any design or planning decisions by NCSA,
McCool, or the assembled group, but most were useful enough that
everyone gained from using them, because they fixed problems that
everyone would or could encounter. As a result, the need for a
coordinated new-httpd release was key to the group’s work. This
new version of NCSA httpd had no name initially, but apache was a
persistent candidate; the somewhat apocryphal origin of the name
is that it was “a patchy webserver.”17

At the outset, in February and March 1995, the pace of work of
the various members of new-httpd differed a great deal, but was in
general extremely rapid. Even before there was an official release
of a new httpd, process issues started to confront the group, as Roy
Fielding later explained: “Apache began with a conscious attempt
to solve the process issues first, before development even started,
because it was clear from the very beginning that a geographi-
cally distributed set of volunteers, without any traditional organi-
zational ties, would require a unique development process in order
to make decisions.”18

The need for process arose more or less organically, as the group
developed mechanisms for managing the various patches: assign-
ing them IDs, testing them, and incorporating them “by hand”
into the main source-code base. As this happened, members of
the list would occasionally find themselves lost, confused by the
process or the efficiency of other members, as in this message from
Andrew Wilson concerning Cliff Skolnick’s management of the list
of bugs:

Cliff, can you concentrate on getting an uptodate copy of the bug/
improvement list please. I’ve already lost track of just what the heck is
meant to be going on. Also what’s the status of this pre-pre-pre release
Apache stuff. It’s either a pre or it isn’t surely? AND is the pre-pre-etc
thing the same as the thing Cliff is meant to be working on?

Just what the fsck is going on anyway? Ay, ay ay! Andrew Wilson.19

225coordinating collaborations

To which Rob Harthill replied, “It is getting messy. I still think
we should all implement one patch at a time together. At the rate
(and hours) some are working we can probably manage a couple
of patches a day. . . . If this is acceptable to the rest of the group, I
think we should order the patches, and start a systematic processes
of discussion, implementations and testing.”20

Some members found the pace of work exciting, while others ap-
pealed for slowing or stopping in order to take stock. Cliff Skolnick
created a system for managing the patches and proposed that list-
members vote in order to determine which patches be included.21
Rob Harthill voted first.

Here are my votes for the current patch list shown at
http://www.hyperreal.com/httpd/patchgen/list.cgi
I’ll use a vote of
-1 have a problem with it
0 haven’t tested it yet (failed to understand it or whatever)
+1 tried it, liked it, have no problem with it.
[Here Harthill provides a list of votes on each patch.]
If this voting scheme makes sense, lets use it to filter out the stuff
we’re happy with. A “-1” vote should veto any patch. There seems to
be about 6 or 7 of us actively commenting on patches, so I’d suggest
that once a patch gets a vote of +4 (with no vetos), we can add it to
an alpha.22

Harthill’s votes immediately instigated discussion about various
patches, further voting, and discussion about the process (i.e., how
many votes or vetoes were needed), all mixed together in a flurry
of e-mail messages. The voting process was far from perfect, but
it did allow some consensus on what “apache” would be, that is,
which patches would be incorporated into an “official” (though
not very public) release: Apache 0.2 on 18 March.23 Without a vot-
ing system, the group of contributors could have gone on applying
patches individually, each in his own context, fixing the problems
that ailed each user, but ignoring those that were irrelevant or un-
necessary in that context. With a voting process, however, a con-
vergence on a tested and approved new-httpd could emerge. As the
process was refined, members sought a volunteer to take votes, to
open and close the voting once a week, and to build a new version
of Apache when the voting was done. (Andrew Wilson was the first
volunteer, to which Cliff Skolnick replied, “I guess the first vote is

226 coordinating collaborations

voting Andrew as the vote taker :-).”)24 The patch-and-vote process
that emerged in the early stages of Apache was not entirely novel;
many contributors noted that the FreeBSD project used a similar
process, and some suggested the need for a “patch coordinator” and
others worried that “using patches gets very ugly, very quickly.”25

The significance of the patch-and-vote system was that it clearly
represented the tension between the virtuosity of individual devel-
opers and a group process aimed at creating and maintaining a
common piece of software. It was a way of balancing the ability
of each separate individual’s expertise against a common desire to
ship and promote a stable, bug-free, public-domain Web server. As
Roy Fielding and others would describe it in hindsight, this tension
was part of Apache’s advantage.

Although the Apache Group makes decisions as a whole, all of the
actual work of the project is done by individuals. The group does not
write code, design solutions, document products, or provide support
to our customers; individual people do that. The group provides an
environment for collaboration and an excellent trial-by-fire for ideas
and code, but the creative energy needed to solve a particular prob-
lem, redesign a piece of the system, or fix a given bug is almost always
contributed by individual volunteers working on their own, for their
own purposes, and not at the behest of the group. Competitors mistak-
enly assume Apache will be unable to take on new or unusual tasks
because of the perception that we act as a group rather than follow a
single leader. What they fail to see is that, by remaining open to new
contributors, the group has an unlimited supply of innovative ideas,
and it is the individuals who chose to pursue their own ideas who are
the real driving force for innovation.26

Although openness is widely touted as the key to the innovations
of Apache, the claim is somewhat disingenuous: patches are just
that, patches. Any large-scale changes to the code could not be ac-
complished by applying patches, especially if each patch must be
subjected to a relatively harsh vote to be included. The only way to
make sweeping changes—especially changes that require iteration
and testing to get right—is to engage in separate “branches” of a
project or to differentiate between internal and external releases—
in short, to fork the project temporarily in hopes that it would soon
rejoin its stable parent. Apache encountered this problem very early
on with the “Shambhala” rewrite of httpd by Robert Thau.

227coordinating collaborations

Shambhala was never quite official: Thau called it his “noodling”
server, or a “garage” project. It started as his attempt to rewrite
httpd as a server which could handle and process multiple requests
at the same time. As an experiment, it was entirely his own project,
which he occasionally referred to on the new-httpd list: “Still hack-
ing Shambhala, and laying low until it works well enough to talk
about.”27 By mid-June of 1995, he had a working version that he
announced, quite modestly, to the list as “a garage project to ex-
plore some possible new directions I thought *might* be useful for
the group to pursue.”28 Another list member, Randy Terbush, tried
it out and gave it rave reviews, and by the end of June there were
two users exclaiming its virtues. But since it hadn’t ever really been
officially identified as a fork, or an alternate development path-
way, this led Rob Harthill to ask: “So what’s the situation regarding
Shambhala and Apache, are those of you who have switched to it
giving up on Apache and this project? If so, do you need a separate
list to discuss Shambhala?”29

Harthill had assumed that the NCSA code-base was “tried and
tested” and that Shambhala represented a split, a fork: “The ques-
tion is, should we all go in one direction, continue as things stand
or Shambahla [sic] goes off on its own?”30 His query drew out the
miscommunication in detail: that Thau had planned it as a “drop-
in” replacement for the NCSA httpd, and that his intentions were
to make it the core of the Apache server, if he could get it to work.
Harthill, who had spent no small amount of time working hard at
patching the existing server code, was not pleased, and made the
core issues explicit.

Maybe it was rst’s [Robert Thau’s] choice of phrases, such as “ga-
rage project” and it having a different name, maybe I didn’t read his
mailings thoroughly enough, maybe they weren’t explicit enough,
whatever. . . . It’s a shame that nobody using Shambhala (who must
have realized what was going on) didn’t raise these issues weeks
ago. I can only presume that rst was too modest to push Shamb-
hala, or at least discussion of it, onto us more vigourously. I remem-
ber saying words to the effect of “this is what I plan to do, stop
me if you think this isn’t a good idea.” Why the hell didn’t anyone
say something? . . . [D]id others get the same impression about rst’s
work as I did? Come on people, if you want to be part of this group,
collaborate!31

228 coordinating collaborations

Harthill’s injunction to collaborate seems surprising in the con-
text of a mailing list and project created to facilitate collabora-
tion, but the injunction is specific: collaborate by making plans
and sharing goals. Implicit in his words is the tension between a
project with clear plans and goals, an overarching design to which
everyone contributes, as opposed to a group platform without clear
goals that provides individuals with a setting to try out alterna-
tives. Implicit in his words is the spectrum between debugging an
existing piece of software with a stable identity and rewriting the
fundamental aspects of it to make it something new. The meaning
of collaboration bifurcates here: on the one hand, the privileging of
the autonomous work of individuals which is submitted to a group
peer review and then incorporated; on the other, the privileging of
a set of shared goals to which the actions and labor of individuals
is subordinated.32

Indeed, the very design of Shambhala reflects the former ap-
proach of privileging individual work: like UNIX and EMACS before
it, Shambhala was designed as a modular system, one that could
“make some of that process [the patch-and-vote process] obsolete,
by allowing stuff which is not universally applicable (e.g., database
back-ends), controversial, or just half-baked, to be shipped anyway
as optional modules.”33 Such a design separates the core platform
from the individual experiments that are conducted on it, rather
than creating a design that is modular in the hierarchical sense
of each contributor working on an assigned section of a project.
Undoubtedly, the core platform requires coordination, but exten-
sions and modifications can happen without needing to transform
the whole project.34 Shambhala represents a certain triumph of the
“shut up and show me the code” aesthetic: Thau’s “modesty” is
instead a recognition that he should be quiet until it “works well
enough to talk about,” whereas Harthill’s response is frustration
that no one has talked about what Thau was planning to do before
it was even attempted. The consequence was that Harthill’s work
seemed to be in vain, replaced by the work of a more virtuosic
hacker’s demonstration of a superior direction.

In the case of Apache one can see how coordination in Free Soft-
ware is not just an afterthought or a necessary feature of distributed
work, but is in fact at the core of software production itself, govern-
ing the norms and forms of life that determine what will count as
good software, how it will progress with respect to a context and

229coordinating collaborations

background, and how people will be expected to interact around
the topic of design decisions. The privileging of adaptability brings
with it a choice in the mode of collaboration: it resolves the tension
between the agonistic competitive creation of software, such as
Robert Thau’s creation of Shambhala, and the need for collective
coordination of complexity, such as Harthill’s plea for collabora-
tion to reduce duplicated or unnecessary work.

Check Out and Commit

The technical and social forms that Linux and Apache take are
enabled by the tools they build and use, from bug-tracking tools
and mailing lists to the Web servers and kernels themselves. One
such tool plays a very special role in the emergence of these or-
ganizations: Source Code Management systems (SCMs). SCMs are
tools for coordinating people and code; they allow multiple people
in dispersed locales to work simultaneously on the same object,
the same source code, without the need for a central coordinating
overseer and without the risk of stepping on each other’s toes. The
history of SCMs—especially in the case of Linux—also illustrates
the recursive-depth problem: namely, is Free Software still free if it
is created with non-free tools?

SCM tools, like the Concurrent Versioning System (cvs) and Sub-
version, have become extremely common tools for Free Software
programmers; indeed, it is rare to find a project, even a project
conducted by only one individual, which does not make use of these
tools. Their basic function is to allow two or more programmers to
work on the same files at the same time and to provide feedback on
where their edits conflict. When the number of programmers grows
large, an SCM can become a tool for managing complexity. It keeps
track of who has “checked out” files; it enables users to lock files
if they want to ensure that no one else makes changes at the same
time; it can keep track of and display the conflicting changes made
by two users to the same file; it can be used to create “internal”
forks or “branches” that may be incompatible with each other, but
still allows programmers to try out new things and, if all goes well,
merge the branches into the trunk later on. In sophisticated forms
it can be used to “animate” successive changes to a piece of code,
in order to visualize its evolution.

230 coordinating collaborations

Beyond mere coordination functions, SCMs are also used as a
form of distribution; generally SCMs allow anyone to check out
the code, but restrict those who can check in or “commit” the code.
The result is that users can get instant access to the most up-to-date
version of a piece of software, and programmers can differentiate
between stable releases, which have few bugs, and “unstable” or
experimental versions that are under construction and will need the
help of users willing to test and debug the latest versions. SCM tools
automate certain aspects of coordination, not only reducing the
labor involved but opening up new possibilities for coordination.

The genealogy of SCMs can be seen in the example of Ken
Thompson’s creation of a diff tape, which he used to distribute
changes that had been contributed to UNIX. Where Thompson
saw UNIX as a spectrum of changes and the legal department at
Bell Labs saw a series of versions, SCM tools combine these two
approaches by minutely managing the revisions, assigning each
change (each diff) a new version number, and storing the history
of all of those changes so that software changes might be precisely
undone in order to discover which changes cause problems. Writ-
ten by Douglas McIlroy, “diff ” is itself a piece of software, one of
the famed small UNIX tools that do one thing well. The program
diff compares two files, line by line, and prints out the differences
between them in a structured format (showing a series of lines with
codes that indicate changes, additions, or removals). Given two
versions of a text, one could run diff to find the differences and
make the appropriate changes to synchronize them, a task that is
otherwise tedious and, given the exactitude of source code, prone
to human error. A useful side-effect of diff (when combined with
an editor like ed or EMACS) is that when someone makes a set of
changes to a file and runs diff on both the original and the changed
file, the output (i.e., the changes only) can be used to reconstruct
the original file from the changed file. Diff thus allows for a clever,
space-saving way to save all the changes ever made to a file, rather
than retaining full copies of every new version, one saves only the
changes. Ergo, version control. diff—and programs like it—became
the basis for managing the complexity of large numbers of pro-
grammers working on the same text at the same time.

One of the first attempts to formalize version control was Walter
Tichy’s Revision Control System (RCS), from 1985.35 RCS kept track
of the changes to different files using diff and allowed programmers

231coordinating collaborations

to see all of the changes that had been made to that file. RCS, how-
ever, could not really tell the difference between the work of one
programmer and another. All changes were equal, in that sense,
and any questions that might arise about why a change was made
could remain unanswered.

In order to add sophistication to RCS, Dick Grune, at the Vrije
Universiteit, Amsterdam, began writing scripts that used RCS as
a multi-user, Internet-accessible version-control system, a system
that eventually became the Concurrent Versioning System. cvs al-
lowed multiple users to check out a copy, make changes, and then
commit those changes, and it would check for and either prevent or
flag conflicting changes. Ultimately, cvs became most useful when
programmers could use it remotely to check out source code from
anywhere on the Internet. It allowed people to work at different
speeds, different times, and in different places, without needing a
central person in charge of checking and comparing the changes.
cvs created a form of decentralized version control for very-large-
scale collaboration; developers could work offline on software, and
always on the most updated version, yet still be working on the
same object.

Both the Apache project and the Linux kernel project use SCMs.
In the case of Apache the original patch-and-vote system quickly
began to strain the patience, time, and energy of participants as
the number of contributors and patches began to grow. From the
very beginning of the project, the contributor Paul Richards had
urged the group to make use of cvs. He had extensive experience
with the system in the Free-BSD project and was convinced that
it provided a superior alternative to the patch-and-vote system.
Few other contributors had much experience with it, however, so
it wasn’t until over a year after Richards began his admonitions
that cvs was eventually adopted. However, cvs is not a simple re-
placement for a patch-and-vote system; it necessitates a different
kind of organization. Richards recognized the trade-off. The patch-
and-vote system created a very high level of quality assurance and
peer review of the patches that people submitted, while the cvs
system allowed individuals to make more changes that might not
meet the same level of quality assurance. The cvs system allowed
branches—stable, testing, experimental—with different levels of
quality assurance, while the patch-and-vote system was inherently
directed at one final and stable version. As the case of Shambhala

232 coordinating collaborations

exhibited, under the patch-and-vote system experimental versions
would remain unofficial garage projects, rather than serve as of-
ficial branches with people responsible for committing changes.

While SCMs are in general good for managing conflicting
changes, they can do so only up to a point. To allow anyone to
commit a change, however, could result in a chaotic mess, just as
difficult to disentangle as it would be without an SCM. In practice,
therefore, most projects designate a handful of people as having
the right to “commit” changes. The Apache project retained its vot-
ing scheme, for instance, but it became a way of voting for “com-
mitters” instead for patches themselves. Trusted committers—those
with the mysterious “good taste,” or technical intuition—became
the core members of the group.

The Linux kernel has also struggled with various issues surround-
ing SCMs and the management of responsibility they imply. The
story of the so-called VGER tree and the creation of a new SCM
called Bitkeeper is exemplary in this respect.36 By 1997, Linux de-
velopers had begun to use cvs to manage changes to the source
code, though not without resistance. Torvalds was still in charge
of the changes to the official stable tree, but as other “lieutenants”
came on board, the complexity of the changes to the kernel grew.
One such lieutenant was Dave Miller, who maintained a “mirror” of
the stable Linux kernel tree, the VGER tree, on a server at Rutgers.
In September 1998 a fight broke out among Linux kernel develop-
ers over two related issues: one, the fact that Torvalds was failing
to incorporate (patch) contributions that had been forwarded to
him by various people, including his lieutenants; and two, as a
result, the VGER cvs repository was no longer in synch with the
stable tree maintained by Torvalds. Two different versions of Linux
threatened to emerge.

A great deal of yelling ensued, as nicely captured in Moody’s
Rebel Code, culminating in the famous phrase, uttered by Larry
McVoy: “Linus does not scale.” The meaning of this phrase is that
the ability of Linux to grow into an ever larger project with increas-
ing complexity, one which can handle myriad uses and functions
(to “scale” up), is constrained by the fact that there is only one
Linus Torvalds. By all accounts, Linus was and is excellent at what
he does—but there is only one Linus. The danger of this situation
is the danger of a fork. A fork would mean one or more new ver-
sions would proliferate under new leadership, a situation much like

233coordinating collaborations

the spread of UNIX. Both the licenses and the SCMs are designed to
facilitate this, but only as a last resort. Forking also implies dilution
and confusion—competing versions of the same thing and poten-
tially unmanageable incompatibilities.

The fork never happened, however, but only because Linus went
on vacation, returning renewed and ready to continue and to be
more responsive. But the crisis had been real, and it drove devel-
opers into considering new modes of coordination. Larry McVoy
offered to create a new form of SCM, one that would allow a much
more flexible response to the problem that the VGER tree repre-
sented. However, his proposed solution, called Bitkeeper, would
create far more controversy than the one that precipitated it.

McVoy was well-known in geek circles before Linux. In the late
stages of the open-systems era, as an employee of Sun, he had
penned an important document called “The Sourceware Operating
System Proposal.” It was an internal Sun Microsystems document
that argued for the company to make its version of UNIX freely
available. It was a last-ditch effort to save the dream of open sys-
tems. It was also the first such proposition within a company to “go
open source,” much like the documents that would urge Netscape to
Open Source its software in 1998. Despite this early commitment,
McVoy chose not to create Bitkeeper as a Free Software project, but
to make it quasi-proprietary, a decision that raised a very central
question in ideological terms: can one, or should one, create Free
Software using non-free tools?

On one side of this controversy, naturally, was Richard Stallman
and those sharing his vision of Free Software. On the other were
pragmatists like Torvalds claiming no goals and no commitment to
“ideology”—only a commitment to “fun.” The tension laid bare the
way in which recursive publics negotiate and modulate the core
components of Free Software from within. Torvalds made a very
strong and vocal statement concerning this issue, responding to
Stallman’s criticisms about the use of non-free software to create
Free Software: “Quite frankly, I don’t _want_ people using Linux for
ideological reasons. I think ideology sucks. This world would be a
much better place if people had less ideology, and a whole lot more
‘I do this because it’s FUN and because others might find it useful,
not because I got religion.’ ”37

Torvalds emphasizes pragmatism in terms of coordination: the
right tool for the job is the right tool for the job. In terms of licenses,

234 coordinating collaborations

however, such pragmatism does not play, and Torvalds has always
been strongly committed to the GPL, refusing to let non-GPL soft-
ware into the kernel. This strategic pragmatism is in fact a rec-
ognition of where experimental changes might be proposed, and
where practices are settled. The GPL was a stable document, shar-
ing source code widely was a stable practice, but coordinating a
project using SCMs was, during this period, still in flux, and thus
Bitkeeper was a tool well worth using so long as it remained suit-
able to Linux development. Torvalds was experimenting with the
meaning of coordination: could a non-free tool be used to create
Free Software?

McVoy, on the other hand, was on thin ice. He was experiment-
ing with the meaning of Free Software licenses. He created three
separate licenses for Bitkeeper in an attempt to play both sides: a
commercial license for paying customers, a license for people who
sell Bitkeeper, and a license for “free users.” The free-user license
allowed Linux developers to use the software for free—though it
required them to use the latest version—and prohibited them from
working on a competing project at the same time. McVoy’s attempt
to have his cake and eat it, too, created enormous tension in the de-
veloper community, a tension that built from 2002, when Torvalds
began using Bitkeeper in earnest, to 2005, when he announced he
would stop.

The tension came from two sources: the first was debates among
developers addressing the moral question of using non-free soft-
ware to create Free Software. The moral question, as ever, was
also a technical one, as the second source of tension, the license
restrictions, would reveal.

The developer Andrew Trigdell, well known for his work on a
project called Samba and his reverse engineering of a Microsoft net-
working protocol, began a project to reverse engineer Bitkeeper by
looking at the metadata it produced in the course of being used for
the Linux project. By doing so, he crossed a line set up by McVoy’s
experimental licensing arrangement: the “free as long as you don’t
copy me” license. Lawyers advised Trigdell to stay silent on the
topic while Torvalds publicly berated him for “willful destruction”
and a moral lapse of character in trying to reverse engineer Bit-
keeper. Bruce Perens defended Trigdell and censured Torvalds for
his seemingly contradictory ethics.38 McVoy never sued Trigdell,
and Bitkeeper has limped along as a commercial project, because,

235coordinating collaborations

much like the EMACS controversy of 1985, the Bitkeeper contro-
versy of 2005 ended with Torvalds simply deciding to create his
own SCM, called git.

The story of the VGER tree and Bitkeeper illustrate common ten-
sions within recursive publics, specifically, the depth of the mean-
ing of free. On the one hand, there is Linux itself, an exemplary
Free Software project made freely available; on the other hand,
however, there is the ability to contribute to this process, a pro-
cess that is potentially constrained by the use of Bitkeeper. So long
as the function of Bitkeeper is completely circumscribed—that is,
completely planned—there can be no problem. However, the mo-
ment one user sees a way to change or improve the process, and
not just the kernel itself, then the restrictions and constraints of
Bitkeeper can come into play. While it is not clear that Bitkeeper
actually prevented anything, it is also clear that developers clearly
recognized it as a potential drag on a generalized commitment to
adaptability. Or to put it in terms of recursive publics, only one
layer is properly open, that of the kernel itself; the layer beneath
it, the process of its construction, is not free in the same sense. It is
ironic that Torvalds—otherwise the spokesperson for antiplanning
and adaptability—willingly adopted this form of constraint, but not
at all surprising that it was collectively rejected.

The Bitkeeper controversy can be understood as a kind of ex-
periment, a modulation on the one hand of the kinds of accept-
able licenses (by McVoy) and on the other of acceptable forms of
coordination (Torvalds’s decision to use Bitkeeper). The experiment
was a failure, but a productive one, as it identified one kind of non-
free software that is not safe to use in Free Software development:
the SCM that coordinates the people and the code they contribute.
In terms of recursive publics the experiment identified the proper
depth of recursion. Although it might be possible to create Free
Software using some kinds of non-free tools, SCMs are not among
them; both the software created and the software used to create it
need to be free.39

The Bitkeeper controversy illustrates again that adaptability
is not about radical invention, but about critique and response.
Whereas controlled design and hierarchical planning represent the
domain of governance—control through goal-setting and orienta-
tion of a collective or a project—adaptability privileges politics,
properly speaking, the ability to critique existing design and to

236 coordinating collaborations

propose alternatives without restriction. The tension between goal-
setting and adaptability is also part of the dominant ideology of
intellectual property. According to this ideology, IP laws promote
invention of new products and ideas, but restrict the re-use or trans-
formation of existing ones; defining where novelty begins is a core
test of the law. McVoy made this tension explicit in his justifica-
tions for Bitkeeper: “Richard [Stallman] might want to consider the
fact that developing new software is extremely expensive. He’s very
proud of the collection of free software, but that’s a collection of
re-implementations, but no profoundly new ideas or products. . . .
What if the free software model simply can’t support the costs of
developing new ideas?”40

Novelty, both in the case of Linux and in intellectual property
law more generally, is directly related to the interplay of social and
technical coordination: goal direction vs. adaptability. The ideal of
adaptability promoted by Torvalds suggests a radical alternative
to the dominant ideology of creation embedded in contemporary
intellectual-property systems. If Linux is “new,” it is new through
adaptation and the coordination of large numbers of creative con-
tributors who challenge the “design” of an operating system from
the bottom up, not from the top down. By contrast, McVoy rep-
resents a moral imagination of design in which it is impossible
to achieve novelty without extremely expensive investment in top-
down, goal-directed, unpolitical design—and it is this activity that
the intellectual-property system is designed to reward. Both are
engaged, however, in an experiment; both are engaged in “figuring
out” what the limits of Free Software are.

Coordination Is Design

Many popular accounts of Free Software skip quickly over the de-
tails of its mechanism to suggest that it is somehow inevitable or
obvious that Free Software should work—a self-organizing, emer-
gent system that manages complexity through distributed contri-
butions by hundreds of thousands of people. In The Success of Open
Source Steven Weber points out that when people refer to Open
Source as a self-organizing system, they usually mean something
more like “I don’t understand how it works.”41

237coordinating collaborations

Eric Raymond, for instance, suggests that Free Software is essen-
tially the emergent, self-organizing result of “collaborative debug-
ging”: “Given enough eyeballs, all bugs are shallow.”42 The phrase
implies that the core success of Free Software is the distributed,
isolated, labor of debugging, and that design and planning happen
elsewhere (when a developer “scratches an itch” or responds to a
personal need). On the surface, such a distinction seems quite obvi-
ous: designing is designing, and debugging is removing bugs from
software, and presto!—Free Software. At the extreme end, it is an
understanding by which only individual geniuses are capable of
planning and design, and if the initial conditions are properly set,
then collective wisdom will fill in the details.

However, the actual practice and meaning of collective or col-
laborative debugging is incredibly elastic. Sometimes debugging
means fixing an error; sometimes it means making the software do
something different or new. (A common joke, often made at Micro-
soft’s expense, captures some of this elasticity: whenever something
doesn’t seem to work right, one says, “That’s a feature, not a bug.”)
Some programmers see a design decision as a stupid mistake and
take action to correct it, whereas others simply learn to use the
software as designed. Debugging can mean something as simple as
reading someone else’s code and helping them understand why it
does not work; it can mean finding bugs in someone else’s software;
it can mean reliably reproducing bugs; it can mean pinpointing
the cause of the bug in the source code; it can mean changing the
source to eliminate the bug; or it can, at the limit, mean changing
or even re-creating the software to make it do something different
or better.43 For academics, debugging can be a way to build a ca-
reer: “Find bug. Write paper. Fix bug. Write paper. Repeat.”44 For
commercial software vendors, by contrast, debugging is part of a
battery of tests intended to streamline a product.

Coordination in Free Software is about adaptability over planning.
It is a way of resolving the tension between individual virtuosity in
creation and the social benefit in shared labor. If all software were
created, maintained, and distributed only by individuals, coordina-
tion would be superfluous, and software would indeed be part of
the domain of poetry. But even the paradigmatic cases of virtuosic
creation—EMACS by Richard Stallman, UNIX by Ken Thompson
and Dennis Ritchie—clearly represent the need for creative forms

238 coordinating collaborations

of coordination and the fundamental practice of reusing, rework-
ing, rewriting, and imitation. UNIX was not created de novo, but
was an attempt to streamline and rewrite Multics, itself a system
that evolved out of Project MAC and the early mists of time-sharing
and computer hacking.45 EMACS was a reworking of the TECO
editor. Both examples are useful for understanding the evolution of
modes of coordination and the spectrum of design and debugging.

UNIX was initially ported and shared through mixed academic
and commercial means, through the active participation of com-
puter scientists who both received updates and contributed fixes
back to Thompson and Ritchie. No formal system existed to man-
age this process. When Thompson speaks of his understanding of
UNIX as a “spectrum” and not as a series of releases (V1, V2, etc.),
the implication is that work on UNIX was continuous, both within
Bell Labs and among its widespread users. Thompson’s use of the
diff tape encapsulates the core problem of coordination: how to col-
lect and redistribute the changes made to the system by its users.

Similarly, Bill Joy’s distribution of BSD and James Gosling’s
distribution of GOSMACS were both ad hoc, noncorporate experi-
ments in “releasing early and often.” These distribution schemes
had a purpose (beyond satisfying demand for the software). The
frequent distribution of patches, fixes, and extensions eased the
pain of debugging software and satisfied users’ demands for new
features and extensions (by allowing them to do both themselves).
Had Thompson and Ritchie followed the conventional corporate
model of software production, they would have been held respon-
sible for thoroughly debugging and testing the software they dis-
tributed, and AT&T or Bell Labs would have been responsible for
coming up with all innovations and extensions as well, based on
marketing and product research. Such an approach would have
sacrificed adaptability in favor of planning. But Thompson’s and
Ritchie’s model was different: both the extension and the debug-
ging of software became shared responsibilities of the users and
the developers. Stallman’s creation of EMACS followed a similar
pattern; since EMACS was by design extensible and intended to
satisfy myriad unforeseen needs, the responsibility rested on the
users to address those needs, and sharing their extensions and fixes
had obvious social benefit.

The ability to see development of software as a spectrum implies
more than just continuous work on a product; it means seeing the

239coordinating collaborations

product itself as something fluid, built out of previous ideas and
products and transforming, differentiating into new ones. Debug-
ging, from this perspective, is not separate from design. Both are
part of a spectrum of changes and improvements whose goals and
direction are governed by the users and developers themselves, and
the patterns of coordination they adopt. It is in the space between
debugging and design that Free Software finds its niche.

Conclusion: Experiments and Modulations

Coordination is a key component of Free Software, and is frequently
identified as the central component. Free Software is the result of
a complicated story of experimentation and construction, and the
forms that coordination takes in Free Software are specific out-
comes of this longer story. Apache and Linux are both experiments—
not scientific experiments per se but collective social experiments
in which there are complex technologies and legal tools, systems
of coordination and governance, and moral and technical orders
already present.

Free Software is an experimental system, a practice that changes
with the results of new experiments. The privileging of adaptability
makes it a peculiar kind of experiment, however, one not directed
by goals, plans, or hierarchical control, but more like what John
Dewey suggested throughout his work: the experimental praxis of
science extended to the social organization of governance in the
service of improving the conditions of freedom. What gives this ex-
perimentation significance is the centrality of Free Software—and
specifically of Linux and Apache—to the experimental expansion
of the Internet. As an infrastructure or a milieu, the Internet is
changing the conditions of social organization, changing the rela-
tionship of knowledge to power, and changing the orientation of
collective life toward governance. Free Software is, arguably, the
best example of an attempt to make this transformation public, to
ensure that it uses the advantages of adaptability as critique to
counter the power of planning as control. Free Software, as a re-
cursive public, proceeds by proposing and providing alternatives. It
is a bit like Kant’s version of enlightenment: insofar as geeks speak
(or hack) as scholars, in a public realm, they have a right to pro-
pose criticisms and changes of any sort; as soon as they relinquish

240 coordinating collaborations

that commitment, they become private employees or servants of
the sovereign, bound by conscience and power to carry out the du-
ties of their given office. The constitution of a public realm is not
a universal activity, however, but a historically specific one: Free
Software confronts the specific contemporary technical and legal
infrastructure by which it is possible to propose criticisms and offer
alternatives. What results is a recursive public filled not only with
individuals who govern their own actions but also with code and
concepts and licenses and forms of coordination that turn these
actions into viable, concrete technical forms of life useful to inhabi-
tants of the present.

Part III    modulations

The question cannot be answered by argument. Experimental

method means experiment, and the question can be answered only

by trying, by organized effort. The reasons for making the trial are

not abstract or recondite. They are found in the confusion, uncer-

tainty and conflict that mark the modern world. . . . The task is

to go on, and not backward, until the method of intelligence and

experimental control is the rule in social relations and social direc-

tion. —john dewey, Li beralism and Social Act ion

8.“If We Succeed, We Will Disappear”

In early 2002, after years of reading and learning about Open
Source and Free Software, I finally had a chance to have dinner
with famed libertarian, gun-toting, Open Source–founding impresa-
rio Eric Raymond, author of The Cathedral and the Bazaar and other
amateur anthropological musings on the subject of Free Software.
He had come to Houston, to Rice University, to give a talk at the be-
hest of the Computer and Information Technology Institute (CITI).
Visions of a mortal confrontation between two anthropologists-
manqué filled my head. I imagined explaining point by point why
his references to self-organization and evolutionary psychology
were misguided, and how the long tradition of economic anthro-
pology contradicted basically everything he had to say about gift-
exchange. Alas, two things conspired against this epic, if bathetic,
showdown.

First, there was the fact that (as so often happens in meetings
among geeks) there was only one woman present at dinner; she was

244 “if we succeed, we will disappear”

young, perhaps unmarried, but not a student—an interested female
hacker. Raymond seated himself beside this woman, turned toward
her, and with a few one-minute-long exceptions proceeded to lavish
her with all of his available attention. The second reason was that
I was seated next to Richard Baraniuk and Brent Hendricks. All at
once, Raymond looked like the past of Free Software, arguing the
same arguments, using the same rhetoric of his online publications,
while Baraniuk and Hendricks looked like its future, posing ques-
tions about the transformation—the modulation—of Free Software
into something surprising and new.

Baraniuk, a professor of electrical engineering and a specialist
in digital signal processing, and Hendricks, an accomplished pro-
grammer, had started a project called Connexions, an “open con-
tent repository of educational materials.” Far more interesting to
me than Raymond’s amateur philosophizing was this extant project
to extend the ideas of Free Software to the creation of educational
materials—textbooks, in particular.

Rich and Brent were, by the looks of it, equally excited to be
seated next to me, perhaps because I was answering their ques-
tions, whereas Raymond was not, or perhaps because I was a new
hire at Rice University, which meant we could talk seriously about
collaboration. Rich and Brent (and Jan Odegard, who, as direc-
tor of CITI, had organized the dinner) were keen to know what
I could add to help them understand the “social” aspects of what
they wanted to do with Connexions, and I, in return, was equally
eager to learn how they conceptualized their Free Software–like
project: what had they kept the same and what had they changed
in their own experiment? Whatever they meant by “social” (and
sometimes it meant ethical, sometimes legal, sometimes cultural,
and so on), they were clear that there were domains of expertise in
which they felt comfortable (programming, project management,
teaching, and a particular kind of research in computer science
and electrical engineering) and domains in which they did not
(the “norms” of academic life outside their disciplines, intellectual-
property law, “culture”). Although I tried to explain the nature of
my own expertise in social theory, philosophy, history, and ethno-
graphic research, the academic distinctions were far less important
than the fact that I could ask detailed and pointed questions about
the project, questions that indicated to them that I must have some
kind of stake in the domains that they needed filled—in particular,

245“if we succeed, we will disappear”

around the question of whether Connexions was the same thing as
Free Software, and what the implications of that might be.

Raymond courted and chattered on, then left, the event of his talk
and dinner of fading significance, but over the following weeks, as
I caught up with Brent and Rich, I became (surprisingly quickly)
part of their novel experiment.

After Free Software

My nonmeeting with Raymond is an allegory of sorts: an allegory
of what comes after Free Software. The excitement around that
table was not so much about Free Software or Open Source, but
about a certain possibility, a kind of genotypic urge of which Free
Software seemed a fossil phenotype and Connexions a live one.
Rich and Brent were people in the midst of figuring something out.
They were engaged in modulating the practices of Free Software.
By modulation I mean exploring in detail the concrete practices—
the how—of Free Software in order to ask what can be changed,
and what cannot, in order to maintain something (openness?) that
no one can quite put his finger on. What drew me immediately to
Connexions was that it was related to Free Software, not meta-
phorically or ideologically, but concretely, practically, and experi-
mentally, a relationship that was more about emergence out of than
it was about the reproduction of forms. But the opposition between
emergence and reproduction immediately poses a question, not un-
like that of the identity of species in evolution: if Free Software is
no longer software, what exactly is it?

In part III I confront this question directly. Indeed, it was this
question that necessitated part II, the analytic decomposition of
the practices and histories of Free Software. In order to answer
the question “Is Connexions Free Software?” (or vice versa) it was
necessary to rethink Free Software as itself a collective, technical
experiment, rather than as an expression of any ideology or culture.
To answer yes, or no, however, merely begs the question “What is
Free Software?” What is the cultural significance of these practices?
The concept of a recursive public is meant to reveal in part the
significance of both Free Software and emergent projects like Con-
nexions; it is meant to help chart when these emergent projects
branch off absolutely (cease to be public) and when they do not, by

246 “if we succeed, we will disappear”

focusing on how they modulate the five components that give Free
Software its contemporary identity.

Connexions modulates all of the components except that of the
movement (there is, as of yet, no real “Free Textbook” movement,
but the “Open Access” movement is a close second cousin).1 Perhaps
the most complex modulation concerns coordination—changes to
the practice of coordination and collaboration in academic-textbook
creation in particular, and more generally to the nature of collabo-
ration and coordination of knowledge in science and scholarship
generally.

Connexions emerged out of Free Software, and not, as one might
expect, out of education, textbook writing, distance education, or
any of those areas that are topically connected to pedagogy. That is
to say, the people involved did not come to their project by attempt-
ing to deal with a problem salient to education and teaching as
much as they did so through the problems raised by Free Software
and the question of how those problems apply to university text-
books. Similarly, a second project, Creative Commons, also emerged
out of a direct engagement with and exploration of Free Software,
and not out of any legal movement or scholarly commitment to
the critique of intellectual-property law or, more important, out of
any desire to transform the entertainment industry. Both projects
are resolutely committed to experimenting with the given practices
of Free Software—to testing their limits and changing them where
they can—and this is what makes them vibrant, risky, and poten-
tially illuminating as cases of a recursive public.

While both initiatives are concerned with conventional subject
areas (educational materials and cultural productions), they enter
the fray orthogonally, armed with anxiety about the social and
moral order in which they live, and an urge to transform it by
modulating Free Software. This binds such projects across substan-
tive domains, in that they are forced to be oppositional, not because
they want to be (the movement comes last), but because they enter
the domains of education and the culture industry as outsiders.
They are in many ways intuitively troubled by the existing state
of affairs, and their organizations, tools, legal licenses, and move-
ments are seen as alternative imaginations of social order, espe-
cially concerning creative freedom and the continued existence of a
commons of scholarly knowledge. To the extent that these projects

247“if we succeed, we will disappear”

remain in an orthogonal relationship, they are making a recursive
public appear—something the textbook industry and the entertain-
ment industry are, by contrast, not at all interested in doing, for
obvious financial and political reasons.

Stories of Connexion

I’m at dinner again. This time, a windowless hotel conference room
in the basement maybe, or perhaps high up in the air. Lawyers, ac-
ademics, activists, policy experts, and foundation people are semi-
excitedly working their way through the hotel’s steam-table fare.
I’m trying to tell a story to the assembled group—a story that I have
heard Rich Baraniuk tell a hundred times—but I’m screwing it up.
Rich always gets enthusiastic stares of wonder, light-bulbs going
off everywhere, a subvocalized “Aha!” or a vigorous nod. I, on the
other hand, am clearly making it too complicated. Faces and fore-
heads are squirmed up into lines of failed comprehension, people
stare at the gravy-sodden food they’re soldiering through, weighing
the option of taking another bite against listening to me complicate
an already complicated world. I wouldn’t be doing this, except that
Rich is on a plane, or in a taxi, delayed by snow or engineers or
perhaps at an eponymous hotel in another city. Meanwhile, our
co-organizer Laurie Racine, has somehow convinced herself that I
have the childlike enthusiasm necessary to channel Rich. I’m flat-
tered, but unconvinced. After about twenty minutes, so is she, and
as I try to answer a question, she stops me and interjects, “Rich re-
ally needs to be here. He should really be telling this story.”

Miraculously, he shows up and, before he can even say hello,
is conscripted into telling his story properly. I sigh in relief and
pray that I’ve not done any irreparable damage and that I can go
back to my role as straight man. I can let the superaltern speak for
himself. The downside of participant observation is being asked to
participate in what one had hoped first of all to observe. I do know
the story—I have heard it a hundred times. But somehow what I
hear, ears tuned to academic questions and marveling at some of
the stranger claims he makes, somehow this is not the ear for en-
lightenment that his practiced and boyish charm delivers to those
hearing it for the first time; it is instead an ear tuned to questions

248 “if we succeed, we will disappear”

of why: why this project? Why now? And even, somewhat convo-
lutedly, why are people so fascinated when he tells the story? How
could I tell it like Rich?

Rich is an engineer, in particular, a specialist in Digital Signal
Processing (DSP). DSP is the science of signals. It is in everything,
says Rich: your cell phones, your cars, your CD players, all those
devices. It is a mathematical discipline, but it is also an intensely
practical one, and it’s connected to all kinds of neighboring fields
of knowledge. It is the kind of discipline that can connect calculus,
bioinformatics, physics, and music. The statistical and analytical
techniques come from all sorts of research and end up in all kinds
of interesting devices. So Rich often finds himself trying to teach
students to make these kinds of connections—to understand that a
Fourier transform is not just another chapter in calculus but a tool
for manipulating signals, whether in bioinformatics or in music.

Around 1998 or 1999, Rich decided that it was time for him to
write a textbook on DSP, and he went to the dean of engineering,
Sidney Burris, to tell him about the idea. Burris, who is also a DSP
man and longtime member of the Rice University community, said
something like, “Rich, why don’t you do something useful?” By
which he meant: there are a hundred DSP textbooks out there, so
why do you want to write the hundred and first? Burris encouraged
Rich to do something bigger, something ambitious enough to put
Rice on the map. I mention this because it is important to note that
even a university like Rice, with a faculty and graduate students
on par with the major engineering universities of the country, per-
ceives that it gets no respect. Burris was, and remains, an inveterate
supporter of Connexions, precisely because it might put Rice “in the
history books” for having invented something truly novel.

At about the same time as his idea for a textbook, Rich’s research
group was switching over to Linux, and Rich was first learning
about Open Source and the emergence of a fully free operating
system created entirely by volunteers. It isn’t clear what Rich’s aha!
moment was, other than simply when he came to an understand-
ing that such a thing as Linux was actually possible. Nonetheless,
at some point, Rich had the idea that his textbook could be an
Open Source textbook, that is, a textbook created not just by him,
but by DSP researchers all over the world, and made available to
everyone to make use of and modify and improve as they saw fit,
just like Linux. Together with Brent Hendricks, Yan David Erlich,

249“if we succeed, we will disappear”

and Ross Reedstrom, all of whom, as geeks, had a deep familiarity
with the history and practices of Free and Open Source Software,
Rich started to conceptualize a system; they started to think about
modulations of different components of Free and Open Source Soft-
ware. The idea of a Free Software textbook repository slowly took
shape.

Thus, Connexions: an “open content repository of high-quality ed-
ucational materials.” These “textbooks” very quickly evolved into
something else: “modules” of content, something that has never
been sharply defined, but which corresponds more or less to a small
chunk of teachable information, like two or three pages in a text-
book. Such modules are much easier to conceive of in sciences like
mathematics or biology, in which textbooks are often multiauthored
collections, finely divided into short chapters with diagrams, exer-
cises, theorems, or programs. Modules lend themselves much less
well to a model of humanities or social-science scholarship based in
reading texts, discussion, critique, and comparison—and this bias is
a clear reflection of what Brent, Ross, and Rich knew best in terms
of teaching and writing. Indeed, the project’s frequent recourse to
the image of an assembly-line model of knowledge production often
confirms the worst fears of humanists and educators when they first
encounter Connexions. The image suggests that knowledge comes
in prepackaged and colorfully branded tidbits for the delectation
of undergrads, rather than characterizing knowledge as a state of
being or as a process.

The factory image (figure 7) is a bit misleading. Rich’s and Brent’s
imaginations are in fact much broader, which shows whenever they
demo the project, or give a talk, or chat at a party about it. Part of
my failure to communicate excitement when I tell the story of Con-
nexions is that I skip the examples, which is where Rich starts: what
if, he says, you are a student taking Calculus 101 and, at the same
time, Intro to Signals and Systems—no one is going to explain to
you how Fourier transforms form a bridge, or connection, between
them. “Our brains aren’t organized in linear, chapter-by-chapter
ways,” Rich always says, “so why are our textbooks?” How can we
give students a way to see the connection between statistics and
genetics, between architecture and biology, between intellectual-
property law and chemical engineering? Rich is always looking for
new examples: a music class for kids that uses information from
physics, or vice versa, for instance. Rich’s great hope is that the

7. The Connexions textbook as a factory. Illustration by Jenn
Drummond, Ross Reedstrom, Max Starkenberg, and others,
1999–2004. Used with permission.

251“if we succeed, we will disappear”

more modules there are in the Connexions commons, the more fan-
tastic and fascinating might be the possibilities for such novel—and
natural—connections.

Free Software—and, in particular, Open Source in the guise of
“self-organizing” distributed systems of coordination—provide a
particular promise of meeting the challenges of teaching and learn-
ing that Rich thinks we face. Rich’s commitment is not to a certain
kind of pedagogical practice, but to the “social” or “community”
benefits of thousands of people working “together” on a textbook.
Indeed, Connexions did not emerge out of education or educational
technology; it was not aligned with any particular theory of learn-
ing (though Rich eventually developed a rhetoric of linked, net-
worked, connected knowledge—hence the name Connexions—that
he uses often to sell the project). There is no school of education
at Rice, nor a particular constituency for such a project (teacher-
training programs, say, or administrative requirements for online
education). What makes Rich’s sell even harder is that the project
emerged at about the same time as the high-profile failure of dot-
com bubble–fueled schemes to expand university education into on-
line education, distance education, and other systems of expanding
the paying student body without actually inviting them onto cam-
pus. The largest of these failed experiments by far was the project
at Columbia, which had reached the stage of implementation at the
time the bubble burst in 2000.2

Thus, Rich styled Connexions as more than just a factory of
knowledge—it would be a community or culture developing richly
associative and novel kinds of textbooks—and as much more than
just distance education. Indeed, Connexions was not the only such
project busy differentiating itself from the perceived dangers of dis-
tance education. In April 2001 MIT had announced that it would
make the content of all of its courses available for free online in
a project strategically called OpenCourseWare (OCW). Such news
could only bring attention to MIT, which explicitly positioned the
announcement as a kind of final death blow to the idea of distance
education, by saying that what students pay $35,000 and up for
per year is not “knowledge”—which is free—but the experience of
being at MIT. The announcement created pure profit from the per-
spective of MIT’s reputation as a generator and disseminator of sci-
entific knowledge, but the project did not emerge directly out of an
interest in mimicking the success of Open Source. That angle was

252 “if we succeed, we will disappear”

provided ultimately by the computer-science professor Hal Abel-
son, whose deep understanding of the history and growth of Free
Software came from his direct involvement in it as a long-standing
member of the computer-science community at MIT. OCW emerged
most proximately from the strange result of a committee report,
commissioned by the provost, on how MIT should position itself in
the “distance/e-learning” field. The surprising response: don’t do it,
give the content away and add value to the campus teaching and
research experience instead.3

OCW, Connexions, and distance learning, therefore, while all os-
tensibly interested in combining education with the networks and
software, emerged out of different demands and different places.
While the profit-driven demand of distance learning fueled many
attempts around the country, it stalled in the case of OCW, largely
because the final MIT Council on Educational Technology report
that recommended OCW was issued at the same time as the first
plunge in the stock market (April 2000). Such issues were not a core
factor in the development of Connexions, which is not to say that
the problems of funding and sustainability have not always been
important concerns, only that genesis of the project was not at the
administrative level or due to concerns about distance education.
For Rich, Brent, and Ross the core commitment was to openness
and to the success of Open Source as an experiment with massive,
distributed, Internet-based, collaborative production of software—
their commitment to this has been, from the beginning, completely
and adamantly unwavering. Neverthless, the project has involved
modulations of the core features of Free Software. Such modula-
tions depend, to a certain extent, on being a project that emerges
out of the ideas and practices of Free Software, rather than, as in
the case of OCW, one founded as a result of conflicting goals (profit
and academic freedom) and resulting in a strategic use of public
relations to increase the symbolic power of the university over its
fiscal growth.

When Rich recounts the story of Connexions, though, he doesn’t
mention any of this background. Instead, like a good storyteller,
he waits for the questions to pose themselves and lets his demon-
stration answer them. Usually someone asks, “How is Connexions
different from OCW?” And, every time, Rich says something simi-
lar: Connexions is about “communities,” about changing the way
scholars collaborate and create knowledge, whereas OCW is simply

253“if we succeed, we will disappear”

an attempt to transfer existing courses to a Web format in order to
make the content of those courses widely available. Connexions is
a radical experiment in the collaborative creation of educational
materials, one that builds on the insights of Open Source and that
actually encompasses the OCW project. In retrospective terms, it is
clear that OCW was interested only in modulating the meaning of
source code and the legal license, whereas Connexions seeks also
to modulate the practice of coordination, with respect to academic
textbooks.

Rich’s story of the origin of Connexions usually segues into a
demonstration of the system, in which he outlines the various tech-
nical, legal, and educational concepts that distinguish it. Connex-
ions uses a standardized document format, the eXtensible Mark-up
Language (XML), and a Creative Commons copyright license on
every module; the Creative Commons license allows people not only
to copy and distribute the information but to modify it and even to
use it for commercial gain (an issue that causes repeated discussion
among the team members). The material ranges from detailed ex-
planations of DSP concepts (naturally) to K-12 music education (the
most popular set of modules). Some contributors have added entire
courses; others have created a few modules here and there. Con-
tributors can set up workgroups to manage the creation of modules,
and they can invite other users to join. Connexions uses a version-
control system so that all of the changes are recorded; thus, if a
module used in one class is changed, the person using it for an-
other class can continue to use the older version if they wish. The
number of detailed and clever solutions embodied in the system
never ceases to thoroughly impress anyone who takes the time to
look at it.

But what always animates people is the idea of random and flex-
ible connection, the idea that a textbook author might be able to
build on the work of hundreds of others who have already contrib-
uted, to create new classes, new modules, and creative connections
between them, or surprising juxtapositions—from the biologist
teaching a class on bioinformatics who needs to remind students
of certain parts of calculus without requiring a whole course; to
the architect who wants a studio to study biological form, not nec-
essarily in order to do experiments in biology, but to understand
buildings differently; to the music teacher who wants students to
understand just enough physics to get the concepts of pitch and

254 “if we succeed, we will disappear”

timbre; to or the physicist who needs a concrete example for the
explanation of waves and oscillation.

The idea of such radical recombinations is shocking for some
(more often for humanities and social-science scholars, rather than
scientists or engineers, for reasons that clearly have to do with
an ideology of authentic and individualized creative ability). The
questions that result—regarding copyright, plagiarism, control, un-
authorized use, misuse, misconstrual, misreading, defamation, and
so on—generally emerge with surprising force and speed. If Rich
were trying to sell a version of “distance learning,” skepticism and
suspicion would quickly overwhelm the project; but as it is, Connex-
ions inverts almost all of the expectations people have developed
about textbooks, classroom practice, collaboration, and copyright.
More often than not people leave the discussion converted—no
doubt helped along by Rich’s storytelling gift.

Modulations: From Free Software to Connexions

Connexions surprises people for some of the same reasons as Free
Software surprises people, emerging, as it does, directly out of the
same practices and the same components. Free Software provides
a template made up of the five components: shared source code,
a concept of openness, copyleft licenses, forms of coordination,
and a movement or ideology. Connexions starts with the idea of
modulating a shared “source code,” one that is not software, but
educational textbook modules that academics will share, port, and
fork. The experiment that results has implications for the other four
components as well. The implications lead to new questions, new
constraints, and new ideas.

The modulation of source code introduces a specific and poten-
tially confusing difference from Free Software projects: Connexions
is both a conventional Free Software project and an unconventional
experiment based on Free Software. There is, of course, plenty of
normal source code, that is, a number of software components that
need to be combined in order to allow the creation of digital docu-
ments (the modules) and to display, store, transmit, archive, and
measure the creation of modules. The creation and management
of this software is expected to function more or less like all Free
Software projects: it is licensed using Free Software licenses, it is

255“if we succeed, we will disappear”

built on open standards of various kinds, and it is set up to take
contributions from other users and developers. The software system
for managing modules is itself built on a variety of other Free Soft-
ware components (and a commitment to using only Free Software).
Connexions has created various components, which are either re-
leased like conventional Free Software or contributed to another
Free Software project. The economy of contribution and release is
a complex one; issues of support and maintenance, as well as of
reputation and recognition, figure into each decision. Others are
invited to contribute, just as they are invited to contribute to any
Free Software project.4

At the same time, there is “content,” the ubiquitous term for digi-
tal creations that are not software. The creation of content modules,
on the other hand (which the software system makes technically
possible), is intended to function like a Free Software project, in
which, for instance, a group of engineering professors might get
together to collaborate on pieces of a textbook on DSP. The Connex-
ions project does not encompass or initiate such collaborations, but,
rather, proceeds from the assumption that such activity is already
happening and that Connexions can provide a kind of alternative
platform—an alternative infrastructure even—which textbook-
writing academics can make use of instead of the current infra-
structure of publishing. The current infrastructure and technical
model of textbook writing, this implies, is one that both prevents
people from taking advantage of the Open Source model of col-
laborative development and makes academic work “non-free.” The
shared objects of content are not source code that can be compiled,
like source code in C, but documents marked up with XML and
filled with “educational” content, then “displayed” either on paper
or onscreen.

The modulated meaning of source code creates all kinds of new
questions—specifically with respect to the other four components.
In terms of openness, for instance, Connexions modulates this
component very little; most of the actors involved are devoted to
the ideals of open systems and open standards, insofar as it is a
Free Software project of a conventional type. It builds on UNIX
(Linux) and the Internet, and the project leaders maintain a nearly
fanatical devotion to openness at every level: applications, pro-
gramming languages, standards, protocols, mark-up languages,
interface tools. Every place where there is an open (as opposed to a

256 “if we succeed, we will disappear”

proprietary) solution—that choice trumps all others (with one note-
worthy exception).5 James Boyle recently stated it well: “Wherever
possible, design the system to run with open content, on open pro-
tocols, to be potentially available to the largest possible number
of users, and to accept the widest possible range of experimental
modifications from users who can themselves determine the devel-
opment of the technology.”6

With respect to content, the devotion to openness is nearly identi-
cal, because conventional textbook publishers “lock in” customers
(students) through the creation of new editions and useless “en-
hanced” content, which jacks up prices and makes it difficult for
educators to customize their own courses. “Openness” in this sense
trades on the same reasoning as it did in the 1980s: the most im-
portant aspect of the project is the information people create, and
any proprietary system locks up content and prevents people from
taking it elsewhere or using it in a different context.

Indeed, so firm is the commitment to openness that Rich and
Brent often say something like, “If we are successful, we will dis-
appear.” They do not want to become a famous online textbook
publisher; they want to become a famous publishing infrastructure.
Being radically open means that any other competitor can use your
system—but it means they are using your system, and this is the
goal. Being open means not only sharing the “source code” (content
and modules), but devising ways to ensure the perpetual openness
of that content, that is, to create a recursive public devoted to the
maintenance and modifiability of the medium or infrastructure by
which it communicates. Openness trumps “sustainability” (i.e., the
self-perpetuation of the financial feasibility of a particular organi-
zation), and where it fails to, the commitment to openness has been
compromised.

The commitment to openness and the modulation of the mean-
ing of source code thus create implications for the meaning of Free
Software licenses: do such licenses cover this kind of content? Are
new licenses necessary? What should they look like? Connexions
was by no means the first project to stimulate questions about the
applicability of Free Software licenses to texts and documents. In
the case of EMACS and the GPL, for example, Richard Stallman
had faced the problem of licensing the manual at the same time as
the source code for the editor. Indeed, such issues would ultimately
result in a GNU Free Documentation License intended narrowly to

257“if we succeed, we will disappear”

cover software manuals. Stallman, due to his concern, had clashed
during the 1990s with Tim O’Reilly, publisher and head of O’Reilly
Press, which had long produced books and manuals for Free Soft-
ware programs. O’Reilly argued that the principles reflected in Free
Software licenses should not be applied to instructional books, be-
cause such books provided a service, a way for more people to learn
how to use Free Software, and in turn created a larger audience.
Stallman argued the opposite: manuals, just like the software they
served, needed to be freely modifiable to remain useful.

By the late 1990s, after Free Software and Open Source had been
splashed across the headlines of the mainstream media, a num-
ber of attempts to create licenses modeled on Free Software, but
applicable to other things, were under way. One of the earliest
and most general was the Open Content License, written by the
educational-technology researcher David Wiley. Wiley’s license
was intended for use on any kind of content. Content could include
text, digital photos, movies, music, and so on. Such a license raises
new issues. For example, can one designate some parts of a text as
“invariant” in order to prevent them from being changed, while al-
lowing other parts of the text to be changed (the model eventually
adopted by the GNU Free Documentation License)? What might the
relationship between the “original” and the modified version be?
Can one expect the original author to simply incorporate suggested
changes? What kinds of forking are possible? Where do the “moral
rights” of an author come into play (regarding the “integrity” of a
work)?

At the same time, the modulation of source code to include aca-
demic textbooks has extremely complex implications for the mean-
ing and context of coordination: scholars do not write textbooks
like programmers write code, so should they coordinate in the same
ways? Coordination of a textbook or a course in Connexions re-
quires novel experiments in textbook writing. Does it lend itself to
academic styles of work, and in which disciplines, for what kinds of
projects? In order to cash in on the promise of distributed, collab-
orative creation, it would be necessary to find ways to coordinate
scholars.

So, when Rich and Brent recognized in me, at dinner, someone
who might know how to think about these issues, they were ac-
knowledging that the experiment they had started had created a
certain turbulence in their understanding of Free Software and,

258 “if we succeed, we will disappear”

in turn, a need to examine the kinds of legal, cultural, and social
practices that would be at stake.7

Modulations: From Connexions to Creative Commons

I’m standing in a parking lot in 100 degree heat and 90 percent
humidity. It is spring in Houston. I am looking for my car, and
I cannot find it. James Boyle, author of Shamans, Software, and
Spleens and distinguished professor of law at Duke University, is
standing near me, staring at me, wearing a wool suit, sweating and
watching me search for my car under the blazing sun. His look says
simply, “If I don’t disembowel you with my Palm Pilot stylus, I am
going to relish telling this humiliating story to your friends at every
opportunity I can.” Boyle is a patient man, with the kind of arch
Scottish humor that can make you feel like his best friend, even as
his stories of the folly of man unfold with perfect comic pitch and
turn out to be about you. Having laughed my way through many
an uproarious tale of the foibles of my fellow creatures, I am aware
that I have just taken a seat among them in Boyle’s theater of hu-
man weakness. I repeatedly press the panic button on my key chain,
in the hopes that I am near enough to my car that it will erupt in a
frenzy of honking and flashing that will end the humiliation.

The day had started well. Boyle had folded himself into my Volks-
wagen (he is tall), and we had driven to campus, parked the car
in what no doubt felt like a memorable space at 9 A.M., and hap-
pily gone to the scheduled meeting—only to find that it had been
mistakenly scheduled for the following day. Not my fault, though
now, certainly, my problem. The ostensible purpose of Boyle’s visit
was to meet the Connexions team and learn about what they were
doing. Boyle had proposed the visit himself, as he was planning to
pass through Houston anyway. I had intended to pester him with
questions about the politics and possibilities of licensing the content
in Connexions and with comparisons to MIT’s OCW and other such
commons projects that Boyle knew of.

Instead of attending the meeting, I took him back to my office,
where I learned more about why he was interested in Connexions.
Boyle’s interest was not entirely altruistic (nor was it designed to
spend valuable quarter hours standing in a scorched parking lot as
I looked for my subcompact car). What interested Boyle was find-

259“if we succeed, we will disappear”

ing a constituency of potential users for Creative Commons, the
nonprofit organization he was establishing with Larry Lessig, Hal
Abelson, Michael Carroll, Eric Eldred, and others—largely because
he recognized the need for a ready constituency in order to make
Creative Commons work. The constituency was needed both to give
the project legitimacy and to allow its founders to understand what
exactly was needed, legally speaking, for the creation of a whole
new set of Free Software-like licenses.

Creative Commons, as an organization and as a movement, had
been building for several years. In some ways, Creative Commons
represented a simple modulation of the Free Software license: a
broadening of the license’s concept to cover other types of content.
But the impetus behind it was not simply a desire to copy and ex-
tend Free Software. Rather, all of the people involved in Creative
Commons were those who had been troubling issues of intellectual
property, information technology, and notions of commons, public
domains, and freedom of information for many years. Boyle had
made his name with a book on the construction of the informa-
tion society by its legal (especially intellectual property) structures.
Eldred was a publisher of public-domain works and the lead plain-
tiff in a court case that went to the Supreme Court in 2002 to de-
termine whether the recent extension of copyright term limits was
constitutional. Abelson was a computer scientist with an active in-
terest in issues of privacy, freedom, and law “on the electronic fron-
tier.” And Larry Lessig was originally interested in constitutional
law, a clerk for Judge Richard Posner, and a self-styled cyberlaw
scholar, who was, during the 1990s, a driving force for the explo-
sion of interest in cyberlaw, much of it carried out at the Berkman
Center for Internet and Society at Harvard University.

With the exception of Abelson—who, in addition to being a fa-
mous computer scientist, worked for years in the same building
that Richard Stallman camped out in and chaired the committee
that wrote the report recommending OCW—none of the members
of Creative Commons cut their teeth on Free Software projects (they
were lawyers and activists, primarily) and yet the emergence of
Open Source into the public limelight in 1998 was an event that
made more or less instant and intuitive sense to all of them. Dur-
ing this time, Lessig and members of the Berkman Center began an
“open law” project designed to mimic the Internet-based collabora-
tion of the Open Source project among lawyers who might want to

260 “if we succeed, we will disappear”

contribute to the Eldred case. Creative Commons was thus built as
much on a commitment to a notion of collaborative creation—the
use of the Internet especially—but more generally on the ability of
individuals to work together to create new things, and especially to
coordinate the creation of these things by the use of novel licensing
agreements.

Creative Commons provided more than licenses, though. It was
part of a social imaginary of a moral and technical order that ex-
tended beyond software to include creation of all kinds; notions of
technical and moral freedom to make use of one’s own “culture”
became more and more prominent as Larry Lessig became more
and more involved in struggles with the entertainment industry
over the “control of culture.” But for Lessig, Creative Commons was
a fall-back option; the direct route to a transformation of the legal
structure of intellectual property was through the Eldred case, a
case that built huge momentum throughout 2001 and 2002, was
granted cert by the Supreme Court, and was heard in October of
2002. One of the things that made the case remarkable was the
series of strange bedfellows it produced; among the economists
and lawyers supporting the repeal of the 1998 “Sonny Bono” Copy-
right Term Extension Act were the arch free-marketeers and Nobel
Prize winners Milton Friedman, James Buchanan, Kenneth Arrow,
Ronald Coase, and George Akerlof. As Boyle pointed out in print,
conservatives and liberals and libertarians all have reasons to be
in favor of scaling back copyright expansion.8 Lessig and his team
lost the case, and the Supreme Court essentially affirmed Congress’s
interpretation of the Constitution that “for limited times” meant
only that the time period be limited, not that it be short.

Creative Commons was thus a back-door approach: if the laws
could not be changed, then people should be given the tools they
needed to work around those laws. Understanding how Creative
Commons was conceived requires seeing it as a modulation of
both the notion of “source code” and the modulation of “copy-
right licenses.” But the modulations take place in that context of a
changing legal system that was so unfamiliar to Stallman and his
EMACS users, a legal system responding to new forms of software,
networks, and devices. For instance, the changes to the Copyright
Act of 1976 created an unintended effect that Creative Commons
would ultimately seize on. By eliminating the requirement to regis-
ter copyrighted works (essentially granting copyright as soon as the

261“if we succeed, we will disappear”

work is “fixed in a tangible medium”), the copyright law created a
situation wherein there was no explicit way in which a work could
be intentionally placed in the public domain. Practically speaking
an author could declare that a work was in the public domain, but
legally speaking the risk would be borne entirely by the person who
sought to make use of that work: to copy it, transform it, sell it,
and so on. With the explosion of interest in the Internet, the prob-
lem ramified exponentially; it became impossible to know whether
someone who had placed a text, an image, a song, or a video online
intended for others to make use of it—even if the author explicitly
declared it “in the public domain.” Creative Commons licenses were
thus conceived and rhetorically positioned as tools for making ex-
plicit exactly what uses could be made of a specific work. They
protected the rights of people who sought to make use of “culture”
(i.e., materials and ideas and works they had not authored), an
approach that Lessig often summed up by saying, “Culture always
builds on the past.”

The background to and context of the emergence of Creative
Commons was of course much more complicated and fraught. Con-
cerns ranged from the plights of university libraries with regard to
high-priced journals, to the problem of documentary filmmakers
unable to afford, or even find the owners of, rights to use images
or snippets in films, to the high-profile fights over online music
trading, Napster, and the RIAA. Over the course of four years, Les-
sig and the other founders of Creative Commons would address all
of these issues in books, in countless talks and presentations and
conferences around the world, online and off, among audiences
ranging from software developers to entrepreneurs to musicians to
bloggers to scientists.

Often, the argument for Creative Commons draws heavily on the
concept of culture besieged by the content industries. A story which
Lessig enjoys telling—one that I heard on several occasions when
I saw him speak at conferences—was that of Mickey Mouse. An
interesting, quasi-conspiratorial feature of the twentieth-century
expansion of intellectual-property law is that term limits seem to
have been extended right around the time Mickey Mouse was about
to become public property. True or not, the point Lessig likes to
make is that the Mouse is not the de novo creation of the mind of
Walt Disney that intellectual-property law likes to pretend it is,
but built on the past of culture, in particular, on Steamboat Willie,

262 “if we succeed, we will disappear”

Charlie Chaplin, Krazy Kat, and other such characters, some as
inspiration, some as explicit material. The greatness in Disney’s
creation comes not from the mind of Disney, but from the culture
from which it emerged. Lessig will often illustrate this in videos and
images interspersed with black-typewriter-font–bestrewn slides and
a machine-gun style that makes you think he’s either a beat-poet
manqué or running for office, or maybe both.

Other examples of intellectual-property issues fill the books and
talks of Creative Commons advocates, stories of blocked innova-
tion, stifled creativity, and—the scariest point of all (at least for
economist-lawyers)—inefficiency due to over-expansive intellectual-
property laws and overzealous corporate lawyer-hordes.9 Lessig
often preaches to the converted (at venues like South by South-
west Interactive and the O’Reilly Open Source conferences), and
the audiences are always outraged at the state of affairs and eager
to learn what they can do. Often, getting involved in the Creative
Commons is the answer. Indeed, within a couple of years, Creative
Commons quickly became more of a movement (a modulation of
the Free/Open Source movement) than an experiment in writing
licenses.

On that hot May day in 2002, however, Creative Commons was
still under development. Later in the day, Boyle did get a chance to
meet with the Connexions project team members. The Connexions
team had already realized that in pursuing an experimental proj-
ect in which Free Software was used as a template they created a
need for new kinds of licenses. They had already approached the
Rice University legal counsel, who, though well-meaning, were not
grounded at all in a deep understanding of Free Software and were
thus naturally suspicious of it. Boyle’s presence and his detailed
questions about the project were like a revelation—a revelation
that there were already people out there thinking about the very
problem the Connexions team faced and that the team would not
need to solve the problem themselves or make the Rice University
legal counsel write new open-content licenses. What Boyle offered
was the possibility for Connexions, as well as for myself as interme-
diary, to be involved in the detailed planning and license writing
that was under way at Creative Commons. At the same time, it
gave Creative Commons an extremely willing “early-adopter” for
the license, and one from an important corner of the world: schol-
arly research and teaching.10 My task, after recovering from the

263“if we succeed, we will disappear”

shame of being unable to find my car, was to organize a workshop
in August at which members of Creative Commons, Connexions,
MIT’s OCW, and any other such projects would be invited to talk
about license issues.

Participant Figuring Out

The workshop I organized in August 2002 was intended to allow
Creative Commons, Connexions, and MIT’s OCW project to try to
articulate what each might want from the other. It was clear what
Creative Commons wanted: to convince as many people as pos-
sible to use their licenses. But what Connexions and OCW might
have wanted, from each other as well as from Creative Commons,
was less clear. Given the different goals and trajectories of the two
projects, their needs for the licenses differed in substantial ways—
enough so that the very idea of using the same license was, at least
temporarily, rendered impossible by MIT. While OCW was primar-
ily concerned about obtaining permissions to place existing copy-
righted work on the Web, Connexions was more concerned about
ensuring that new work remain available and modifiable.

In retrospect, this workshop clarified the novel questions and
problems that emerged from the process of modulating the com-
ponents of Free Software for different domains, different kinds of
content, and different practices of collaboration and sharing. Since
then, my own involvement in this activity has been aimed at re-
solving some of these issues in accordance with an imagination of
openness, an imagination of social order, that I had learned from
my long experience with geeks, and not from my putative expertise
as an anthropologist or a science-studies scholar. The fiction that
I had at first adopted—that I was bringing scholarly knowledge to
the table—became harder and harder to maintain the more I real-
ized that it was my understanding of Free Software, gained through
ongoing years of ethnographic apprenticeship, that was driving my
involvement.

Indeed, the research I describe here was just barely undertaken
as a research project. I could not have conceived of it as a fundable
activity in advance of discovering it; I could not have imagined the
course of events in any of the necessary detail to write a proper
proposal for research. Instead, it was an outgrowth of thinking and

264 “if we succeed, we will disappear”

participating that was already under way, participation that was
driven largely by intuition and a feeling for the problem repre-
sented by Free Software. I wanted to help figure something out. I
wanted to see how “figuring out” happens. While I could have orga-
nized a fundable research project in which I picked a mature Free
Software project, articulated a number of questions, and spent time
answering them among this group, such a project would not have
answered the questions I was trying to form at the time: what is
happening to Free Software as it spreads beyond the world of hack-
ers and software? How is it being modulated? What kinds of limits
are breached when software is no longer the central component?
What other domains of thought and practice were or are “readied”
to receive and understand Free Software and its implications?11

My experience—my participant-observation—with Creative Com-
mons was therefore primarily done as an intermediary between
the Connexions project (and, by implication, similar projects under
way elsewhere) and Creative Commons with respect to the writing
of licenses. In many ways this detailed, specific practice was the
most challenging and illuminating aspect of my participation, but
in retrospect it was something of a red herring. It was not only the
modulation of the meaning of source code and of legal licenses
that differentiated these projects, but, more important, the meaning
of collaboration, reuse, coordination, and the cultural practice of
sharing and building on knowledge that posed the trickiest of the
problems.

My contact at Creative Commons was not James Boyle or Larry
Lessig, but Glenn Otis Brown, the executive director of that orga-
nization (as of summer 2002). I first met Glenn over the phone, as
I tried to explain to him what Connexions was about and why he
should join us in Houston in August to discuss licensing issues re-
lated to scholarly material. Convincing him to come to Texas was
an easier sell than explaining Connexions (given my penchant for
complicating it unnecessarily), as Glenn was an Austin native who
had been educated at the University of Texas before heading off to
Harvard Law School and its corrupting influence at the hands of
Lessig, Charlie Nesson, and John Perry Barlow.

Glenn galvanized the project. With his background as a lawyer,
and especially his keen interest in intellectual-property law, and
his long-standing love of music of all kinds Glenn lent incredible
enthusiasm to his work. Prior to joining Creative Commons, he had

265“if we succeed, we will disappear”

clerked for the Hon. Stanley Marcus on the Eleventh Circuit Court
of Appeals, in Miami, where he worked on the so-called Wind Done
Gone case.12 His participation in the workshop was an experiment
of his own; he was working on a story that he would tell countless
times and which would become one of the core examples of the
kind of practice Creative Commons wanted to encourage.

A New York Times story describes how the band the White Stripes
had allowed Steven McDonald, the bassist from Redd Kross, to lay a
bass track onto the songs that made up the album White Blood Cells.
In a line that would eventually become a kind of mantra for Cre-
ative Commons, the article stated: “Mr. McDonald began putting
these copyrighted songs online without permission from the White
Stripes or their record label; during the project, he bumped into
Jack White, who gave him spoken assent to continue. It can be that
easy when you skip the intermediaries.”13 The ease with which these
two rockers could collaborate to create a modified work (called, of
course, Redd Blood Cells) without entering a studio, or, more salient,
a law firm, was emblematic of the notion that “culture builds on the
past” and that it need not be difficult to do so.

Glenn told the story with obvious and animated enthusiasm, end-
ing with the assertion that the White Stripes didn’t have to give
up all their rights to do this, but they didn’t have to keep them all
either; instead of “All Rights Reserved,” he suggested, they could
say “Some Rights Reserved.” The story not only manages to capture
the message and aims of Creative Commons, but is also a nice indi-
cation of the kind of dual role that Glenn played, first as a lawyer,
and second as a kind of marketing genius and message man. The
possibility of there being more than a handful of people like Glenn
around was not lost on anyone, and his ability to switch between
the language of law and that of nonprofit populist marketing was
phenomenal.14

At the workshop, participants had a chance to hash out a num-
ber of different issues related to the creation of licenses that would
be appropriate to scholarly content: questions of attribution and
commercial use, modification and warranty; differences between
federal copyright law concerning licenses and state law concerning
commercial contracts. The starting point for most people was Free
Software, but this was not the only starting point. There were at
least two other broad threads that fed into the discussion and into
the general understanding of the state of affairs facing projects like

266 “if we succeed, we will disappear”

Connexions or OCW. The first thread was that of digital libraries,
hypertext, human-computer interaction research, and educational
technology. These disciplines and projects often make common ref-
erence to two pioneers, Douglas Englebart and Theodore Nelson,
and more proximately to things like Apple’s HyperCard program
and a variety of experiments in personal academic computing. The
debates and history that lead up to the possibility of Connexions
are complex and detailed, but they generally lack attention to le-
gal detail. With the exception of a handful of people in library
and information science who have made “digital” copyright into
a subspecialty, few such projects, over the last twenty-five years,
have made the effort to understand, much less incorporate, issues
of intellectual property into their purview.

The other thread combines a number of more scholarly interests
that come out of the disciplines of economics and legal theory:
institutional economics, critical legal realism, law and economics—
these are the scholastic designations. Boyle and Lessig, for exam-
ple, are both academics; Boyle does not practice law, and Lessig
has tried few cases. Nonetheless, they are both inheritors of a legal
and philosophical pragmatism in which value is measured by the
transformation of policy and politics, not by the mere extension
or specification of conceptual issues. Although both have penned
a large number of complicated theoretical articles (and Boyle is
well known in several academic fields for his book Shamans, Soft-
ware, and Spleens and his work on authorship and the law), nei-
ther, I suspect, would ever sacrifice the chance to make a set of
concrete changes in legal or political practice given the choice.
This point was driven home for me in a conversation I had with
Boyle and others at dinner on the night of the launch of Creative
Commons, in December 2002. During that conversation, Boyle said
something to the effect of, “We actually made something; we didn’t
just sit around writing articles and talking about the dangers that
face us—we made something.” He was referring as much to the
organization as to the legal licenses they had created, and in this
sense Boyle qualifies very much as a polymathic geek whose un-
derstanding of technology is that it is an intervention into an al-
ready constituted state of affairs, one that demonstrates its value
by being created and installed, not by being assessed in the court
of scholarly opinions.

267“if we succeed, we will disappear”

Similarly, Lessig’s approach to writing and speaking is unabash-
edly aimed at transforming the way people approach intellectual-
property law and, even more generally, the way they understand
the relationship between their rights and their culture.15 Lessig’s
approach, at a scholarly level, is steeped in the teachings of law
and economics (although, as he has playfully pointed out, a “sec-
ond” Chicago school) but is focused more on the understanding
and manipulation of norms and customs (“culture”) than on law
narrowly conceived.16

Informing both thinkers is a somewhat heterodox economic con-
sensus drawn primarily from institutional economics, which is
routinely used to make policy arguments about the efficacy or effi-
ciency of the intellectual-property system. Both are also informed by
an emerging consensus on treating the public domain in the same
manner in which environmentalists treated the environment in the
1960s.17 These approaches begin with long-standing academic and
policy concerns about the status and nature of “public goods,” not
directly with the problem of Free Software or the Internet. In some
ways, the concern with public goods, commons, the public domain,
and collective action are part of the same “reorientation of power
and knowledge” I identify throughout Two Bits: namely, the legiti-
mation of the media of knowledge creation, communication, and
circulation. Most scholars of institutional economics and public
policy are, however, just as surprised and bewildered by the fact
of Free Software as the rest of the world has been, and they have
sought to square the existing understanding of public goods and
collective action with this new phenomenon.18

All of these threads form the weft of the experiment to modulate
the components of Free Software to create different licenses that
cover a broader range of objects and that deal with people and
organizations that are not software developers. Rather than at-
tempt to carry on arguments at the level of theory, however, my
aim in participating was to see how and what was argued in prac-
tice by the people constructing these experiments, to observe what
constraints, arguments, surprises, or bafflements emerged in the
course of thinking through the creation of both new licenses and a
new form of authorship of scholarly material. Like those who study
“science in action” or the distinction between “law on the books”
and “law in action,” I sought to observe the realities of a practice

268 “if we succeed, we will disappear”

heavily determined by textual and epistemological frameworks of
various sorts.19

In my years with Connexions I eventually came to see it as some-
thing in between a natural experiment and a thought experiment: it
was conducted in the open, and it invited participation from work-
ing scholars and teachers (a natural experiment, in that it was not
a closed, scholarly endeavor aimed at establishing specific results,
but an essentially unbounded, functioning system that people could
and would come to depend on), and yet it proceeded by making a
series of strategic guesses (a thought experiment) about three re-
lated things: (1) what it is (and will be) possible to do technically;
(2) what it is (and will be) possible to do legally; and (3) what
scholars and educators have done and now do in the normal course
of their activities.

At the same time, this experiment gave shape to certain legal
questions that I channeled in the direction of Creative Commons,
issues that ranged from technical questions about the structure of
digital documents, requirements of attribution, and URLs to ques-
tions about moral rights, rights of disavowal, and the meaning of
“modification.” The story of the interplay between Connexions and
Creative Commons was, for me, a lesson in a particular mode of le-
gal thinking which has been described in more scholarly terms as the
difference between the Roman or, more proximately, the Napoleonic
tradition of legal rationalism and the Anglo-American common-
law tradition.20 It was a practical experience of what exactly the
difference is between legal code and software code, with respect to
how those two things can be made flexible or responsive.

Reuse, Modification, and

the Nonexistence of Norms

The Connexions project was an experiment in modulating the prac-
tices of Free Software. It was not inspired by so much as it was
based on a kind of template drawn from the experience of people
who had some experience with Free Software, including myself. But
how exactly do such templates get used? What is traced and what
is changed? In terms of the cultural significance of Free Software,
what are the implications of these changes? Do they maintain the
orientation of a recursive public, or are they attempts to apply Free
Software for other private concerns? And if they are successful,
what are the implications for the domains they affect: education,
scholarship, scientific knowledge, and cultural production? What
effects do these changes have on the norms of work and the mean-
ing and shape of knowledge in these domains?

9.

270 reuse, modification, norms

In this chapter I explore in ethnographic detail how the modu-
lations of Free Software undertaken by Connexions and Creative
Commons are related to the problems of reuse, modification, and
the norms of scholarly production. I present these two projects as
responses to the contemporary reorientation of knowledge and
power; they are recursive publics just as Free Software is, but they
expand the domain of practice in new directions, that is, into the
scholarly world of textbooks and research and into the legal do-
mains of cultural production more generally.

In the course of “figuring out” what they are doing, these two
projects encounter a surprising phenomenon: the changing mean-
ing of the finality of a scholarly or creative work. Finality is not
certainty. While certainty is a problematic that is well and often
studied in the philosophy of science and in science studies, final-
ity is less so. What makes a work stay a work? What makes a fact
stay a fact? How does something, certain or not, achieve stability
and identity? Such finality, the very paradigm of which is the pub-
lished book, implies stability. But Connexions and Creative Com-
mons, through their experiments with Free Software, confront the
problem of how to stabilize a work in an unstable context: that of
shareable source code, an open Internet, copyleft licenses, and new
forms of coordination and collaboration.1 The meaning of finality
will have important effects on the ability to constitute a politics
around any given work, whether a work of art or a work of scholar-
ship and science. The actors in Creative Commons and Connexions
realize this, and they therefore form yet another instance of a recur-
sive public, precisely because they seek ways to define the mean-
ing of finality publicly and openly—and to make modifiability an
irreversible aspect of the process of stabilizing knowledge.

The modulations of Free Software performed by Connexions and
Creative Commons reveal two significant issues. The first is the
troublesome matter of the meaning of reuse, as in the reuse of con-
cepts, ideas, writings, articles, papers, books, and so on for the cre-
ation of new objects of knowledge. Just as software source code can
be shared, ported, and forked to create new versions with new func-
tions, and just as software and people can be coordinated in new
ways using the Internet, so too can scholarly and scientific content.
I explore the implications of this comparison in this chapter. The
central gambit of both Connexions and Creative Commons (and
much of scientific practice generally) is that new work builds on

271reuse, modification, norms

previous work. In the sciences the notion that science is cumulative
is not at issue, but exactly how scientific knowledge accumulates is
far from clear. Even if “standing on the shoulders of giants” can be
revealed to hide machinations, secret dealings, and Machiavellian
maneuvering of the most craven sort, the very concept of cumula-
tive knowledge is sound. Building a fact, a result, a machine, or
a theory out of other, previous works—this kind of reuse as prog-
ress is not in question. But the actual material practice of writing,
publication, and the reuse of other results and works is something
that, until very recently, has been hidden from view, or has been
so naturalized that the norms of practice are nearly invisible to
practitioners themselves.

This raises the other central concern of this chapter: that of the
existence or nonexistence of norms. For an anthropologist to query
whether or not norms exist might seem to theorize oneself out of
a job; one definition of anthropology is, after all, the making ex-
plicit of cultural norms. But the turn to “practices” in anthropology
and science studies has in part been a turn away from “norms”
in their classic sociological and specifically Mertonian fashion.
Robert Merton’s suggestion that science has been governed by
norms—disinterestedness, communalism, organized skepticism,
objectivity—has been repeatedly and roundly criticized by a gen-
eration of scholars in the sociology of scientific knowledge who
note that even if such norms are asserted by actors, they are often
subverted in the doing.2 But a striking thing has happened recently;
those Mertonian norms of science have in fact become the more or
less explicit goals in practice of scientists, engineers, and geeks in
the wake of Free Software. If Mertonian norms do not exist, then
they are being invented. This, of course, raises novel questions: can
one create norms? What exactly would this mean? How are norms
different from culture or from legal and technical constraints? Both
Connexions and Creative Commons explicitly pose this question
and search for ways to identify, change, or work with norms as
they understand them, in the context of reuse.

Whiteboards: What Was Publication?

More than once, I have found myself in a room with Rich Baraniuk
and Brent Hendricks and any number of other employees of the

272 reuse, modification, norms

Connexions project, staring at a whiteboard on which a number
of issues and notes have been scrawled. Usually, the notes have a
kind of palimpsestic quality, on account of the array of previous
conversations that are already there, rewritten in tiny precise script
in a corner, or just barely erased beneath our discussion. These con-
versations are often precipitated by a series of questions that Brent,
Ross Reedstrom, and the development team have encountered as
they build and refine the system. They are never simple questions.
A visitor staring at the whiteboard might catch a glimpse of the
peculiar madness that afflicts the project: a mixture of legal terms,
technical terms, and terms like scholarly culture or DSP communities.
I’m consulted whenever this mixture of terms starts to worry the
developers in terms of legality, culture, or the relationship between
the two. I’m generally put in the position of speaking either as a
lawyer (which, legally speaking, I am not supposed to do) or as an
anthropologist (which I do mainly by virtue of holding a position
in an anthropology department). Rarely are the things I say met
with assent: Brent and Ross, like most hackers, are insanely well
versed in the details of intellectual-property law, and they routinely
correct me when I make bold but not-quite-true assertions about it.
Nonetheless, they rarely feel well versed enough to make decisions
about legal issues on their own, and often I have been called—on
again as a thoughtful sounding board, and off again as intermedi-
ary with Creative Commons.

This process, I have come to realize, is about figuring something
out. It is not just a question of solving technical problems to which I
might have some specific domain knowledge. Figuring out is modu-
lation; it is template-work. When Free Software functions as a tem-
plate for projects like Connexions, it does so literally, by allowing
us to trace a known form of practice (Free Software) onto a less
well known, seemingly chaotic background and to see where the
forms match up and where they do not. One very good way to un-
derstand what this means in a particular case—that is, to see more
clearly the modulations that Connexions has performed—is to con-
sider the practice and institution of scholarly publication through
the template of Free Software.

Consider the ways scholars have understood the meaning and
significance of print and publication in the past, prior to the Inter-
net and the contemporary reorientation of knowledge and power.
The list of ambitious historians and theorists of the relationship

273reuse, modification, norms

of media to knowledge is long: Lucien Febvre, Walter Ong, Mar-
shall McLuhan, Jack Goody, Roger Chartier, Friedrich Kittler, Eliza-
beth Eisenstein, Adrian Johns, to name a few.3 With the exception
of Johns, however, the history of publication does not start with the
conventional, legal, and formal practices of publication so much as
it does with the material practices and structure of the media them-
selves, which is to say the mechanics and technology of the printed
book.4 Ong’s theories of literacy and orality, Kittler’s re-theorization
of the structure of media evolution, Goody’s anthropology of the
media of accounting and writing—all are focused on the tangible
media as the dependent variable of change. By contrast, Johns’s The
Nature of the Book uncovers the contours of the massive endeavor
involved in making the book a reliable and robust form for the cir-
culation of knowledge in the seventeenth century and after.

Prior to Johns’s work, arguments about the relationship of print
and power fell primarily into two camps: one could overestimate
the role of print and the printing press by suggesting that the “fix-
ity” of a text and the creation of multiple copies led automatically to
the spread of ideas and the rise of enlightenment. Alternately, one
could underestimate the role of the book by suggesting that it was
merely a transparent media form with no more or less effect on the
circulation or evaluation of ideas than manuscripts or television.
Johns notes in particular the influence of Elizabeth Eisenstein’s
scholarship on the printing press (and Bruno Latour’s dependence
on this in turn), which very strongly identified the characteristics of
the printed work with the cultural changes seen to follow, includ-
ing the success of the scientific revolution and the experimental
method.5 For example, Eisenstein argued that fixity—the fact that
a set of printed books can be exact copies of each other—implied
various transformations in knowledge. Johns, however, is at pains
to show just how unreliable texts are often perceived to be. From
which sources do they come? Are they legitimate? Do they have
the backing or support of scholars or the crown? In short, fixity
can imply sound knowledge only if there is a system of evaluation
already in place. Johns suggests a reversal of this now common-
sense notion: “We may consider fixity not as an inherent quality, but
as a transitive one. . . . We may adopt the principle that fixity exists
only inasmuch as it is recognized and acted upon by people—and
not otherwise. The consequence of this change in perspective is that
print culture itself is immediately laid open to analysis. It becomes

274 reuse, modification, norms

a result of manifold representations, practices and conflicts, rather
than just the manifold cause with which we are often presented.
In contrast to talk of a ‘print logic’ imposed on humanity, this ap-
proach allows us to recover the construction of different print cul-
tures in particular historical circumstances.”6

Johns’s work focuses on the elaborate and difficult cultural, so-
cial, and economic work involved, in the sixteenth and seventeenth
centuries, in transforming the European book into the kind of au-
thority it is taken to be across the globe today. The creation and
standardization not just of books but of a publishing infrastructure
involved the kind of careful social engineering, reputation man-
agement, and skills of distinction, exclusion, and consensus that
science studies has effectively explored in science and engineering.
Hence, Johns focuses on “print-in-the-making” and the relationship
of the print culture of that period to the reliability of knowledge. In-
stead of making broad claims for the transformation of knowledge
by print (eerily similar in many respects to the broad claims made
for the Internet), Johns explores the clash of representations and
practices necessary to create the sense, in the twentieth century,
that there really is or was only one print culture.

The problem of publication that Connexions confronts is thus not
simply caused by the invention or spread of the Internet, much
less that of Free Software. Rather, it is a confrontation with the
problems of producing stability and finality under very different
technical, legal, and social conditions—a problem more complex
even than the “different print cultures in particular historical cir-
cumstances” that Johns speaks of in regard to the book. Connexions
faces two challenges: that of figuring out the difference that today
introduces with respect to yesterday, and that of creating or modi-
fying an infrastructure in order to satisfy the demands of a properly
authoritative knowledge. Connexions textbooks of necessity look
different from conventional textbooks; they consist of digital docu-
ments, or “modules,” that are strung together and made available
through the Web, under a Creative Commons license that allows
for free use, reuse, and modification. This version of “publication”
clearly has implications for the meaning of authorship, ownership,
stewardship, editing, validation, collaboration, and verification.

The conventional appearance of a book—in bookstores, through
mail-order, in book clubs, libraries, or universities—was an event
that signified, as the name suggests, its official public appearance

275reuse, modification, norms

in the world. Prior to this event, the text circulated only privately,
which is to say only among the relatively small network of people
who could make copies of it or who were involved in its writing,
editing, proofreading, reviewing, typesetting, and so on. With the
Internet, the same text can be made instantly available at each of
these stages to just as many or more potential readers. It effectively
turns the event of publication into a notional event—the click of a
button—rather than a highly organized, material event. Although
it is clear that the practice of publication has become denaturalized
or destabilized by the appearance of new information technolo-
gies, this hardly implies that the work of stabilizing the meaning of
publication—and producing authoritative knowledge as a result—
has ceased. The tricky part comes in understanding how Free Soft-
ware is used as a template by which the authority of publication
in the Gutenberg Galaxy is being transformed into the authority of
publication in the Turing Universe.

Publication in Connexions

In the case of Connexions there are roughly three stages to the cre-
ation of content. The first, temporally speaking, is whatever hap-
pens before Connexions is involved, that is, the familiar practices
of what I would call composition, rather than simply writing. Some
project must be already under way, perhaps started under the con-
straints of and in the era of the book, perhaps conceived as a digital
textbook or an online textbook, but still, as of yet, written on paper
or saved in a Word document or in LaTeX, on a scholar’s desktop.
It could be an individual project, as in the case of Rich’s initial plan
to write a DSP textbook, or it could be a large collaborative project
to write a textbook.

The second stage is the one in which the document or set of
documents is translated (“Connexified”) into the mark-up system
used by Connexions. Connexions uses the eXtensible Mark-up Lan-
guage (XML), in particular a subset of tags that are appropriate
to textbooks. These “semantic” tags (e.g., <term>) refer only to
the meaning of the text they enclose, not to the “presentation” or
syntactic look of what they enclose; they give the document the
necessary structure it needs to be transformed in a number of cre-
ative ways. Because XML is related only to content, and not to

276 reuse, modification, norms

presentation (it is sometimes referred to as “agnostic”), the same
document in Connexions can be automatically made to look a num-
ber of different ways, as an onscreen presentation in a browser, as
a pdf document, or as an on-demand published work that can be
printed out as a book, complete with continuous page numbering,
footnotes (instead of links), front and back matter, and an index.
Therein lies much of Connexions’s technical wizardry.

During the second stage, that of being marked up in XML, the
document is not quite public, although it is on the Internet; it is in
what is called a workgroup, where only those people with access
to the particular workgroup (and those have been invited to col-
laborate) can see the document. It is only when the document is
finished, ready to be distributed, that it will enter the third, “pub-
lished” stage—the stage at which anyone on the Internet can ask
for the XML document and the software will display it, using style
sheets or software converters, as an HTML page, a pdf document
for printing, or as a section of a larger course. However, publication
does not here signify finality; indeed, one of the core advantages
of Connexions is that the document is rendered less stable than the
book-object it mimics: it can be updated, changed, corrected, de-
leted, copied, and so on, all without any of the rigmarole associated
with changing a published book or article. Indeed, the very pow-
erful notion of fixity theorized by McLuhan and Eisenstein is ren-
dered moot here. The fact that a document has been printed (and
printed as a book) no longer means that all copies will be the same;
indeed, it may well change from hour to hour, depending on how
many people contribute (as in the case of Free Software, which can
go through revisions and updates as fast, or faster, than one can
download and install new versions). With Wikipedia entries that
are extremely politicized or active, for example, a “final” text is
impossible, although the dynamics of revision and counter-revision
do suggest outlines for the emergence of some kinds of stability.
But Connexions differs from Wikipedia with respect to this finality
as well, because of the insertion of the second stage, during which
a self-defined group of people can work on a nonpublic text before
committing changes that a public can see.

It should be clear, given the example of Connexions, or any simi-
lar project such as Wikipedia, that the changing meaning of “pub-
lication” in the era of the Internet has significant implications,
both practical (they affect the way people can both write and pub-

277reuse, modification, norms

lish their works) and legal (they fit uneasily into the categories
established for previous media). The tangibility of a textbook is
quite obviously transformed by these changes, but so too is the
cultural significance of the practice of writing a textbook. And if
textbooks are written differently, using new forms of collabora-
tion and allowing novel kinds of transformation, then the vali-
dation, certification, and structure of authority of textbooks also
change, inviting new forms of open and democratic participation
in writing, teaching, and learning. No longer are all of the settled
practices of authorship, collaboration, and publication configured
around the same institutional and temporal scheme (e.g., the book
and its publishing infrastructure). In a colloquial sense, this is obvi-
ous, for instance, to any musician today: recording and releasing a
song to potentially millions of listeners is now technically possible
for anyone, but how that fact changes the cultural significance of
music creation is not yet clear. For most musicians, creating music
hasn’t changed much with the introduction of digital tools, since
new recording and composition technologies largely mimic the
recording practices that preceded them (for example, a program
like Garage Band literally looks like a four-track recorder on the
screen). Similarly, much of the practice of digital publication has
been concerned with recreating something that looks like tradi-
tional publication.7

Perhaps unsurprisingly, the Connexions team spent a great deal
of time at the outset of the project creating a pdf-document-creation
system that would essentially mimic the creation of a conventional
textbook, with the push of a button.8 But even this process causes
a subtle transformation: the concept of “edition” becomes much
harder to track. While a conventional textbook is a stable entity
that goes through a series of printings and editions, each of which
is marked on its publication page, a Connexions document can go
through as many versions as an author wants to make changes, all
the while without necessarily changing editions. In this respect, the
modulation of the concept of source code translates the practices
of updating and “versioning” into the realm of textbook writing.
Recall the cases ranging from the “continuum” of UNIX versions
discussed by Ken Thompson to the complex struggles over version
control in the Linux and Apache projects. In the case of writing
source code, exactitude demands that the change of even a single
character be tracked and labeled as a version change, whereas a

278 reuse, modification, norms

conventional-textbook spelling correction or errata issuance would
hardly create the need for a new edition.

In the Connexions repository all changes to a text are tracked
and noted, but the identity of the module does not change. “Edi-
tions” have thus become “versions,” whereas a substantially revised
or changed module might require not reissuance but a forking of
that module to create one with a new identity. Editions in publish-
ing are not a feature of the medium per se; they are necessitated
by the temporal and spatial practices of publication as an event,
though this process is obviously made visible only in the book it-
self. In the same way, versioning is now used to manage a process,
but it results in a very different configuration of the medium and
the material available in that medium. Connexions traces the tem-
plate of software production (sharing, porting, and forking and the
norms and forms of coordination in Free Software) directly onto
older forms of publication. Where the practices match, no change
occurs, and where they don’t, it is the reorientation of knowledge
and power and the emergence of recursive publics that serves as a
guide to the development of the system.

Legally speaking, the change from editions to versions and forks
raises troubling questions about the boundaries and status of a
copyrighted work. It is a peculiar feature of copyright law that it
needs to be updated regularly each time the media change, in order
to bring certain old practices into line with new possibilities. Scat-
tered throughout the copyright statutes is evidence of old new me-
dia: gramophones, jukeboxes, cable TV, photocopiers, peer-to-peer
file-sharing programs, and so on. Each new form of communication
shifts the assumptions of past media enough that they require a re-
evaluation of the putative underlying balance of the constitutional
mandate that gives (U.S.) intellectual-property law its inertia. Each
new device needs to be understood in terms of creation, storage,
distribution, production, consumption, and tangibility, in order to
assess the dangers it poses to the rights of inventors and artists.

Because copyright law “hard codes” the particular media into the
statutes, copyright law is comfortable with, for example, book edi-
tions or musical recordings. But in Connexions, new questions arise:
how much change constitutes a new work, and thus demands a
new copyright license? If a licensee receives one copy of a work, to
which versions will he or she retain rights after changes? Because

279reuse, modification, norms

of the complexity of the software involved, there are also questions
that the law simply cannot deal with (just as it had not been able
to do in the late 1970s with respect to the definition of software): is
the XML document equivalent to the viewable document, or must
the style sheet also be included? Where does the “content” begin
and the “software” end? Until the statutes either incorporate these
new technologies or are changed to govern a more general process,
rather than a particular medium, these questions will continue to
emerge as part of the practice of writing.

This denaturalization of the notion of “publication” is responsible
for much of the surprise and concern that greets Connexions and
projects like it. Often, when I have shown the system to scholars,
they have displayed boredom mixed with fear and frustration: “It
can never replace the book.” On the one hand, Connexions has made
an enormous effort to make its output look as much like conven-
tional books as possible; on the other hand, the anxiety evinced is
justified, because what Connexions seeks to replace is not the book,
which is merely ink and paper, but the entire publishing process. The
fact that it is not replacing the book per se, but the entire process
whereby manuscripts are made into stable and tangible objects
called books is too overwhelming for most scholars to contemplate—
especially scholars who have already mastered the existing pro-
cess of book writing and creation. The fact that the legal system is
built to safeguard something prior to and not fully continuous with
the practice of Connexions only adds to the concern that such a
transformation is immodest and risky, that it endangers a practice
with centuries of stability behind it. Connexions, however, is not
the cause of destabilization; rather, it is a response to or recogni-
tion of a problem. It is not a new problem, but one that periodically
reemerges: a reorientation of knowledge and power that includes
questions of enlightenment and rationality, democracy and self-
governance, liberal values and problems of the authority and vali-
dation of knowledge. The salient moments of correlation are not the
invention of the printing press and the Internet, but the struggle to
make published books into a source of authoritative knowledge in
the seventeenth and eighteenth centuries and the struggle to find
ways to do the same with the Internet today.9

Connexions is, in many ways, understood by its practitioners to be
both a response to the changing relations of knowledge and power,

280 reuse, modification, norms

one that reaffirms the fundamental values of academic freedom and
the circulation of knowledge, and also an experiment with, even a
radicalization of, the ideals of both Free Software and Mertonian
science. The transformation of the meaning of publication implies a
fundamental shift in the status, in the finality of knowledge. It seeks
to make of knowledge (knowledge in print, not in minds) something
living and constantly changing, as opposed to something static and
final. The fact that publication no longer signifies finality—that
is, no longer signifies a state of fixity that is assumed in theory
(and frequently in practice) to account for a text’s reliability—has
implications for how the text is used, reused, interpreted, valued,
and trusted.10 Whereas the traditional form of the book is the same
across all printed versions or else follows an explicit practice of ap-
pearing in editions (complete with new prefaces and forewords), a
Connexions document might very well look different from week to
week or year to year.11 While a textbook might also change signifi-
cantly to reflect the changing state of knowledge in a given field,
it is an explicit goal of Connexions to allow this to happen “in real
time,” which is to say, to allow educators to update textbooks as
fast as they do scientific knowledge.12

These implications are not lost on the Connexions team, but nei-
ther are they understood as goals or as having simple solutions.
There is a certain immodest, perhaps even reckless, enthusiasm sur-
rounding these implications, an enthusiasm that can take both poly-
math and transhumanist forms. For instance, the destabilization
of the contemporary textbook-publishing system that Connexions
represents is (according to Rich) a more accurate way to represent
the connections between concepts than a linear textbook format.
Connexions thus represents a use of technology as an intervention
into an existing context of practice. The fact that Connexions could
also render the reliability or trustworthiness of scholarly knowledge
unstable is sometimes discussed as an inevitable outcome of tech-
nical change—something that the world at large, not Connexions,
must learn to deal with.

To put it differently, the “goal” of Connexions was never to de-
stroy publishing, but it has been structured by the same kind of
imaginations of moral and technical order that pervade Free Soft-
ware and the construction of the Internet. In this sense Rich, Brent,
and others are geeks in the same sense as Free Software geeks: they

281reuse, modification, norms

share a recursive public devoted to achieving a moral and techni-
cal order in which openness and modifiability are core values (“If
we are successful, we will disappear”). The implication is that the
existing model and infrastructure for the publication of textbooks is
of a different moral and technical order, and thus that Connexions
needs to innovate not only the technology (the source code or the
openness of the system) or the legal arrangements (licenses) but
also the very norms and forms of textbook writing itself (coordina-
tion and, eventually, a movement). If publication once implied the
appearance of reliable, final texts—even if the knowledge therein
could be routinely contested by writing more texts and reviews and
critiques—Connexions implies the denaturalization of not knowl-
edge per se, but of the process whereby that knowledge is stabilized
and rendered reliable, trustworthy.

A keyword for the transformation of textbook writing is com-
munity, as in the tagline of the Connexions project: “Sharing
Knowledge and Building Communities.” Building implies that such
communities do not yet exist and that the technology will enable
them; however, Connexions began with the assumption that there
exist standard academic practices and norms of creating teach-
ing materials. As a result, Connexions both enables these practices
and norms, by facilitating a digital version of the textbook, and
intervenes in them, by creating a different process for creating a
textbook. Communities are both assumed and desired. Sometimes
they are real (a group of DSP engineers, networked around Rich
and others who work in his subspecialty), and sometimes they are
imagined (as when in the process of grant writing we claim that the
most important component of the success of the project is the “seed-
ing” of scholarly communities). Communities, furthermore, are not
audiences or consumers, and sometimes not even students or learn-
ers. They are imagined to be active, creative producers and users of
teaching materials, whether for teaching or for the further creation
of such materials. The structure of the community has little to do
with issues of governance, solidarity, or pedagogy, and much more
to do with a set of relationships that might obtain with respect
to the creation of teaching materials—a community of collabora-
tive production or collaborative debugging, as in the modulation of
forms of coordination, modulated to include the activity of creating
teaching materials.

282 reuse, modification, norms

Agency and Structure in Connexions

One of the most animated whiteboard conversations I remember
having with Brent and Ross concerned difference between the pos-
sible “roles” that a Connexions user might occupy and the implica-
tions this could have for both the technical features of the system
and the social norms that Connexions attempts to maintain and
replicate. Most software systems are content to designate only “us-
ers,” a generic name-and-password account that can be given a set
of permissions (and which has behind it a long and robust tradition
in computer-operating-system and security research). Users are us-
ers, even if they may have access to different programs and files.
What Connexions needed was a way to designate that the same
person might have two different exogenous roles: a user might be
the author, but not the owner of the content, and vice versa. For in-
stance, perhaps Rice University maintains the copyright for a work,
but the author is credited for its creation. Such a situation—known,
in legal terms, as “work for hire”—is routine in some universities and
most corporations. So while the author is generally given the free-
dom and authority to create and modify the text as he or she sees
fit, the university asserts copyright ownership in order to retain the
right to commercially exploit the work. Such a situation is far from
settled and is, of course, politically fraught, but the Connexions sys-
tem, in order to be useful at all to anyone, needed to accommodate
this fact. Taking an oppositional political stand would render the
system useless in too many cases or cause it to become precisely
the kind of authorless, creditless system as Wikipedia—a route not
desired by many academics. In a perfectly open world all Connex-
ions modules might each have identical authors and owners, but
pragmatism demands that the two roles be kept separate.

Furthermore, there are many people involved every day in the
creation of academic work who are neither the author nor the
owner: graduate students and undergraduates, research scientists,
technicians, and others in the grand, contested, complex academic
ecology. In some disciplines, all contributors may get authorship
credit and some of them may even share ownership, but often many
of those who do the work get mentioned only in acknowledgments,
or not at all. Again, although the impulse of the creators of Connex-
ions might be to level the playing field and allow only one kind of
user, the fact of the matter is that academics simply would not use

283reuse, modification, norms

such a system.13 The need for a role such as “maintainer” (which
might also include “editor”), which was different from author or
owner, thus also presented itself.

As Brent, Ross, and I stared at the whiteboard, the discovery of
the need for multiple exogenous roles hit all of us in a kind of slow-
motion shockwave. It was not simply that the content needed to
have different labels attached to it to keep track of these people
in a database—something deeper was at work: the law and the
practice of authorship actually dictated, to a certain extent, what
the software itself should look like. All of sudden, the questions
were preformatted, so to speak, by the law and by certain kinds
of practices that had been normalized and thus were nearly invis-
ible: who should have permission to change what? Who will have
permission to add or drop authors? Who will be allowed to make
what changes, and who will have the legal right to do so and who
the moral or customary right? What implications follow from the
choices the designers make and the choices we present to authors
or maintainers?

The Creative Commons licenses were key to revealing many of
these questions. The licenses were in themselves modulations of
Free Software licenses, but created with people like artists, musi-
cians, scholars, and filmmakers in mind. Without them, the content
in Connexions would be unlicensed, perhaps intended to be in the
public domain, but ultimately governed by copyright statutes that
provided no clear answers to any of these questions, as those stat-
utes were designed to deal with older media and a different publi-
cation process. Using the Creative Commons licenses, on the other
hand, meant that the situation of the content in Connexions became
well-defined enough, in a legal sense, to be used as a constraint
in defining the structure of the software system. The license itself
provided the map of the territory by setting parameters for things
such as distribution, modification, attribution, and even display,
reading, or copying.

For instance, when the author and owner are different, it is not
at all obvious who should be given credit. Authors, especially aca-
demic authors, expect to be given credit (which is often all they get)
for an article or a textbook they have written, yet universities often
retain ownership of those textbooks, and ownership would seem
to imply a legal right to be identified as both owner and author
(e.g., Forrester Research reports or UNESCO reports, which hide the

284 reuse, modification, norms

identity of authors). In the absence of any licenses, such a scenario
has no obvious solution or depends entirely on the specific context.
However, the Creative Commons licenses specified the meaning of
attribution and the requirement to maintain the copyright notice,
thus outlining a procedure that gave the Connexions designers fixed
constraints against which to measure how they would implement
their system.

A positive result of such constraints is that they allow for a kind
of institutional flexibility that would not otherwise be possible.
Whether a university insists on expropriating copyright or allows
scholars to keep their copyrights, both can use Connexions. Connex-
ions is more “open” than traditional textbook publishing because
it allows a greater number of heterogeneous contributors to par-
ticipate, but it is also more “open” than something like Wikipedia,
which is ideologically committed to a single definition of author-
ship and ownership (anonymous, reciprocally licensed collabora-
tive creation by authors who are also the owners of their work).
While Wikipedia makes such an ideological commitment, it cannot
be used by institutions that have made the decision to operate as
expropriators of content, or even in cases wherein authors willingly
allow someone else to take credit. If authors and owners must be
identical, then either the author is identified as the owner, which
is illegal in some cases, or the owner is identified as the author, a
situation no academic is willing to submit to.

The need for multiple roles also revealed other peculiar and trou-
bling problems, such as the issue of giving an “identity” to long-
dead authors whose works are out of copyright. So, for instance, a
piece by A. E. Housman was included as a module for a class, and
while it is clear that Housman is the author, the work is no longer
under copyright, so Housman is no longer the copyright holder (nor
is the society which published it in 1921). Yet Connexions requires
that a copyright be attached to each module to allow it to be li-
censed openly. This particular case, of a dead author, necessitated
two interesting interventions. Someone has to actually create an
account for Housman and also issue the work as an “edition” or de-
rivative under a new copyright. In this case, the two other authors
are Scott McGill and Christopher Kelty. A curious question arose in
this context: should we be listed both as authors and owners (and
maintainers), or only as owners and maintainers? And if someone
uses the module in a new context (as they have the right to do,

285reuse, modification, norms

under the license), will they be required to give attribution only
to Housman, or also to McGill and Kelty as well? What rights to
ownership do McGill and Kelty have over the digital version of the
public-domain text by Housman?14

The discussion of roles circulated fluidly across concepts like
law (and legal licenses), norms, community, and identity. Brent
and Ross and others involved had developed sophisticated imagi-
nations of how Connexions would fit into the existing ecology of
academia, constrained all the while by both standard goals, like
usability and efficiency, and by novel legal licenses and concerns
about the changing practices of authors and scholars. The ques-
tion, for instance, of how a module can be used (technically, le-
gally) is often confused with, or difficult to disentangle from, how
a module should be used (technically, legally, or, more generally,
“socially”—with usage shaped by the community who uses it). In
order to make sense of this, Connexions programmers and partici-
pants like myself are prone to using the language of custom and
norm, and the figure of community, as in “the customary norms of
a scholarly community.”

From Law and Technology to Norm

The meaning of publication in Connexions and the questions about
roles and their proper legal status emerged from the core concern
with reuse, which is the primary modulation of Free Software that
Connexions carries out: the modulation of the meaning of source
code to include textbook writing. What makes source code such
a central component of Free Software is the manner in which it
is shared and transformed, not the technical features of any par-
ticular language or program. So the modulation of source code to
include textbooks is not just an attempt to make textbooks exact,
algorithmic, or digital, but an experiment in sharing textbook writ-
ing in a similar fashion.

This modulation also affects the other components: it creates a de-
mand for openness in textbook creation and circulation; it demands
new kinds of copyright licenses (the Creative Commons licenses);
and it affects the meaning of coordination among scholars, ranging
from explicit forms of collaboration and co-creation to the entire
spectrum of uses and reuses that scholars normally make of their

286 reuse, modification, norms

peers’ works. It is this modulation of coordination that leads to the
second core concern of Connexions: that of the existence of “norms”
of scholarly creation, use, reuse, publication, and circulation.

Since software programmers and engineers are prone to thinking
about things in concrete, practical, and detailed ways, discussions
of creation, use, and circulation are rarely conducted at the level
of philosophical abstraction. They are carried out on whiteboards,
using diagrams.

The whiteboard diagram transcribed in figure 8 was precipitated
by a fairly precise question: “When is the reuse of something in a
module (or of an entire module) governed by ‘academic norms’
and when is it subject to the legal constraints of the licenses?”
For someone to quote a piece of text from one module in another
is considered normal practice and thus shouldn’t involve concerns
about legal rights and duties to fork the module (create a new
modified version, perhaps containing only the section cited, which
is something legal licenses explicitly allow). But what if someone
borrows, say, all of the equations in a module about information
theory and uses them to illustrate a very different point in a differ-
ent module. Does he or she have either a normal or a legal right
to do so? Should the equations be cited? What should that citation
look like? What if the equations are particularly hard to mark-up
in the MathML language and therefore represent a significant in-
vestment in time on the part of the original author? Should the law
govern this activity, or should norms?

There is a natural tendency among geeks to answer these ques-
tions solely with respect to the law; it is, after all, highly codified
and seemingly authoritative on such issues. However, there is often
no need to engage the law, because of the presumed consensus
(“academic norms”) about how to proceed, even if those norms con-
flict with the law. But these norms are nowhere codified, and this
makes geeks (and, increasingly, academics themselves) uneasy. As
in the case of a requirement of attribution, the constraints of a
written license are perceived to be much more stable and reliable
than those of culture, precisely because culture is what remains
contested and contestable. So the idea of creating a new “version”
of a text is easier to understand when it is clearly circumscribed as
a legally defined “derivative work.” The Connexions software was
therefore implemented in such a way that the legal right to create
a derived work (to fork a module) could be done with the press of

287reuse, modification, norms

a button: a distinct module is automatically created, and it retains
the name of the original author and the original owner, but now
also includes the new author’s name as author and maintainer.
That new author can proceed to make any number of changes.

But is forking always necessary? What if the derivative work con-
tains only a few spelling corrections and slightly updated informa-
tion? Why not change the existing module (where such changes
would be more akin to issuing a new edition), rather than cre-
ate a legally defined derivative work? Why not simply suggest the
changes to the original author? Why not collaborate? While a legal
license gives people the right to do all of these things without ever
consulting the person who licensed it, there may well be occasions

8. Whiteboard diagram: the cascade of reuse in Connexions. Conception
by Ross Reedstrom, Brent Hendricks, and Christopher Kelty. Transcribed
in the author’s fieldnotes, 2003.

288 reuse, modification, norms

when it makes much more sense to ignore those rights in favor of
other norms. The answers to these questions depend a great deal
on the kind and the intent of the reuse. A refined version of the
whiteboard diagram, depicted in figure 9, attempts to capture the
various kinds of reuse and their intersection with laws, norms, and
technologies.

The center of the diagram contains a list of different kinds of
imaginable reuses, arrayed from least interventionist at the top
to most interventionist at the bottom, and it implies that as the
intended transformations become more drastic, the likelihood of
collaboration with the original author decreases. The arrow on the
left indicates the legal path from cultural norms to protected fair
uses; the arrow on the right indicates the technical path from built-
in legal constraints based on the licenses to software tools that
make collaboration (according to presumed scholarly norms) easier
than the alternative (exercising the legal right to make a derivative
work). With the benefit of hindsight, it seems that the arrows on
either side should actually be a circle that connect laws, technolo-
gies, and norms in a chain of influence and constraint, since it is
clear in retrospect that the norms of authorial practice have actu-
ally changed (or at least have been made explicit) based on the
existence of licenses and the types of tools available (such as blogs
and Wikipedia).

The diagram can best be understood as a way of representing,
to Connexions itself (and its funders), the experiment under way
with the components of Free Software. By modulating source code
to include the writing of scholarly textbooks, Connexions made vis-
ible the need for new copyright licenses appropriate to this content;
by making the system Internet-based and relying on open stan-
dards such as XML and Open Source components, Connexions also
modulated the concept of openness to include textbook publication;
and by making the system possible as an open repository of freely
licensed textbook modules, Connexions made visible the changed
conditions of coordination, not just between two collaborating au-
thors, but within the entire system of publication, citation, use,
reuse, borrowing, building on, plagiarizing, copying, emulating,
and so on. Such changes to coordination may or may not take
hold. For many scholars, they pose an immodest challenge to a
working system that has developed over centuries, but for others
they represent the removal of arbitrary constraints that prevent

289reuse, modification, norms

novel and innovative forms of knowledge creation and association
rendered possible in the last thirty to forty years (and especially in
the last ten). For some, these modulations might form the basis for
a final modulation—a Free Textbooks movement—but as yet no
such movement exists.

In the case of shared software source code, one of the principal
reasons for sharing it was to reuse it: to build on it, to link to it, to
employ it in ways that made building more complex objects into an
easier task. The very design philosophy of UNIX well articulates the
necessity of modularity and reuse, and the idea is no less powerful
in other areas, such as textbooks. But just as the reuse of software is
not simply a feature of software’s technical characteristics, the idea
of “reusing” scholarly materials implies all kinds of questions that
are not simply questions of recombining texts. The ability to share
source code—and the ability to create complex software based on
it—requires modulations of both the legal meaning of software,
as in the case of EMACS, and the organizational form, as in the

9. Whiteboard diagram transformed: forms of reuse in Connexions.
Conception by Christopher Kelty, 2004.

290 reuse, modification, norms

emergence of Free Software projects other than the Free Software
Foundation (the Linux kernel, Perl, Apache, etc.).

In the case of textbook reuse (but only after Free Software), the
technical and the legal problems that Connexions addresses are
relatively well specified: what software to use, whether to use XML,
the need for an excellent user interface, and so on. However, the
organizational, cultural, or practical meaning of reuse is not yet
entirely clear (a point made by figures 8 and 9). In many ways,
the recognition that there are cultural norms among academics
mirrors the (re)discovery of norms and ethics among Free Software
hackers.15 But the label “cultural norms” is a mere catch-all for a
problem that is probably better understood as a mixture of con-
crete technical, organizational, and legal questions and as more
or less abstract social imaginaries through which a particular kind
of material order is understood and pursued—the creation of a re-
cursive public. How do programmers, lawyers, engineers, and Free
Software advocates (and anthropologists) “figure out” how norms
work? How do they figure out ways to operationalize or make use
of them? How do they figure out how to change them? How do
they figure out how to create new norms? They do so through the
modulations of existing practices, guided by imaginaries of moral
and technical order. Connexions does not tend toward becoming
Free Software, but it does tend toward becoming a recursive public
with respect to textbooks, education, and the publication of peda-
gogical techniques and knowledge. The problematic of creating an
independent, autonomous public is thus the subterranean ground
of both Free Software and Connexions.

To some extent, then, the matter of reuse raises a host of questions
about the borders and boundaries in and of academia. Brent, Ross,
and I assumed at the outset that communities have both borders
and norms, and that the two are related. But, as it turns out, this is
not a safe assumption. At neither the technical nor the legal level
is the use of the software restricted to academics—indeed, there
is no feasible way to do that and still offer it on the Internet—nor
does anyone involved wish it to be so restricted. However, there
is an implicit sense that the people who will contribute content
will primarily be academics and educators (just as Free Software
participants are expected, but not required to be programmers). As
figure 9 makes clear, there may well be tremendous variation in
the kinds of reuse that people wish to make, even within academia.

291reuse, modification, norms

Scholars in the humanities, for instance, are loath to even imagine
others creating derivative works with articles they have written
and can envision their work being used only in the conventional
manner of being read, cited, and critiqued. Scholars in engineer-
ing, biology, or computer science, on the other hand, may well take
pleasure in the idea or act of reuse, if it is adequately understood
to be a “scientific result” or a suitably stable concept on which to
build.16 Reuse can have a range of different meanings depending
not only on whether it is used by scholars or academics, but within
that heterogeneous group itself.

The Connexions software does not, however, enforce disciplinary
differences. If anything it makes very strong and troubling claims
that knowledge is knowledge and that disciplinary constraints are
arbitrary. Thus, for instance, if a biologist wishes to transform a lit-
erary scholar’s article on Darwin’s tropes to make it reflect current
evolutionary theory, he or she could do so; it is entirely possible,
both legally and technically. The literary scholar could react in a
number of ways, including outrage that the biologist has misread
or misunderstood the work or pleasure in seeing the work refined.
Connexions adheres rigorously to its ideas of openness in this re-
gard; it neither encourages nor censures such behavior.

By contrast, as figure 9 suggests, the relationship between these
two scholars can be governed either by the legal specification of
rights contained in the licenses (a privately ordered legal regime
dependent on a national-cum-global statutory regime) or by the
customary means of collaboration enabled, perhaps enhanced, by
software tools. The former is the domain of the state, the legal pro-
fession, and a moral and technical order that, for lack of a better
word, might be called modernity. The latter, however, is the do-
main of the cultural, the informal, the practical, the interpersonal;
it is the domain of ethics (prior to its modernization, perhaps) and
of tradition.

If figure 9 is a recapitulation of modernity and tradition (what
better role for an anthropologist to play!), then the presumptive
boundaries around “communities” define which groups possess
which norms. But the very design of Connexions—its technical and
legal exactitude—immediately brings a potentially huge variety
of traditions into conflict with one another. Can the biologist and
the literary scholar be expected to occupy the same universe of
norms? Does the fact of being academics, employees of a university,

292 reuse, modification, norms

or readers of Darwin ensure this sharing of norms? How are the
boundaries policed and the norms communicated and reinforced?

The problem of reuse therefore raises a much broader and more
complex question: do norms actually exist? In particular, do they
exist independent of the particular technical, legal, or organiza-
tional practice in which groups of people exist—outside the coordi-
nated infrastructure of scholarship and science? And if Connexions
raises this question, can the same question not also be asked of
the elaborate system of professions, disciplines, and organizations
that coordinate the scholarship of different communities? Are these
norms, or are they “technical” and “legal” practices? What differ-
ence does formalization make? What difference does bureaucrati-
zation make?17

The question can also be posed this way: should norms be under-
stood as historically changing constructs or as natural features of
human behavior (regular patterns, or conventions, which emerge
inevitably wherever human beings interact). Are they a feature of
changing institutions, laws, and technologies, or do they form and
persist in the same way wherever people congregate? Are norms
features of a “calculative agency,” as Michael Callon puts it, or
are they features of the evolved human mind, as Marc Hauser ar-
gues?18

The answer that my informants give, in practice, concerning the
mode of existence of cultural norms is neither. On the one hand, in
the Connexions project the question of the mode of existence of aca-
demic norms is unanswered; the basic assumption is that certain
actions are captured and constrained neither by legal constraints
nor technical barriers, and that it takes people who know or study
“communities” (i.e., nonlegal and nontechnical constraints) to fig-
ure out what those actions may be. On some days, the project is
modestly understood to enable academics to do what they do faster
and better, but without fundamentally changing anything about
the practice, institutions, or legal relations; on other days, however,
it is a radically transformative project, changing how people think
about creating scholarly work, a project that requires educating
people and potentially “changing the culture” of scholarly work,
including its technology, its legal relations, and its practices.

In stark contrast (despite the very large degree of simpatico), the
principal members of Creative Commons answer the question of the
existence of norms quite differently than do those in Connexions:

293reuse, modification, norms

they assert that norms not only change but are manipulated and/or
channeled by the modulation of technical and legal practices (this
is the novel version of law and economics that Creative Commons
is founded on). Such an assertion leaves very little for norms or for
culture; there may be a deep evolutionary role for rule following or
for choosing socially sanctioned behavior over socially unaccept-
able behavior, but the real action happens in the legal and techni-
cal domains. In Creative Commons the question of the existence
of norms is answered firmly in the phrase coined by Glenn Brown:
“punt to culture.” For Creative Commons, norms are a prelegal and
pretechnical substrate upon which the licenses they create operate.
Norms must exist for the strategy employed in the licenses to make
sense—as the following story illustrates.

On the Nonexistence of Norms in the
Culture of No Culture

More than once, I have found myself on the telephone with Glenn
Brown, staring at notes, a diagram, or some inscrutable collec-
tion of legalese. Usually, the conversations wander from fine legal
points to music and Texas politics to Glenn’s travels around the
globe. They are often precipitated by some previous conversation
and by Glenn’s need to remind himself (and me) what we are in
the middle of creating. Or destroying. His are never simple ques-
tions. While the Connexions project started with a repository of
scholarly content in need of a license, Creative Commons started
with licenses in need of particular kinds of content. But both proj-
ects required participants to delve into the details of both licenses
and the structure of digital content, which qualified me, for both
projects, as the intermediary who could help explore these intersec-
tions. My phone conversations with Glenn, then, were much like the
whiteboard conversations at Connexions: filled with a mix of tech-
nical and legal terminology, and conducted largely in order to give
Glenn the sense that he had cross-checked his plans with someone
presumed to know better. I can’t count the number of times I have
hung up the phone or left the conference room wondering, “Have
I just sanctioned something mad?” Yet rarely have I felt that my
interventions served to do more than confirm suspicions or derail
already unstable arguments.

294 reuse, modification, norms

In one particular conversation—the “punt to culture” conversa-
tion—I found myself bewildered by a sudden understanding of the
process of writing legal licenses and of the particular assumptions
about human behavior that need to be present in order to imagine
creating these licenses or ensuring that they will be beneficial to
the people who will use them.

These discussions (which often included other lawyers) happened
in a kind of hypothetical space of legal imagination, a space highly
structured by legal concepts, statutes, and precedents, and one ex-
traordinarily carefully attuned to the fine details of semantics. A
core aspect of operating within this imagination is the distinction
between law as an abstract semantic entity and law as a practical
fact that people may or may not deal with. To be sure, not all law-
yers operate this way, but the warrant for thinking this way comes
from no less eminent an authority than Oliver Wendell Holmes, for
whom the “Path of Law” was always from practice to abstract rule,
and not the reverse.19 The opposition is unstable, but I highlight it
here because it was frequently used as a strategy for constructing
precise legal language. The ability to imagine the difference be-
tween an abstract rule designating legality and a rule encountered
in practice was a first step toward seeing how the language of the
rule should be constructed.

I helped write, read, and think about the first of the Creative
Commons licenses, and it was through this experience that I came
to understand how the crafting of legal language works, and in par-
ticular how the mode of existence of cultural or social norms relates
to the crafting of legal language. Creative Commons licenses are
not a familiar legal entity, however. They are modulations of the
Free Software license, but they differ in important ways.

The Creative Commons licenses allow authors to grant the use
of their work in about a dozen different ways—that is, the license
itself comes in versions. One can, for instance, require attribution,
prohibit commercial exploitation, allow derivative or modified
works to be made and circulated, or some combination of all these.
These different combinations actually create different licenses, each
of which grants intellectual-property rights under slightly different
conditions. For example, say Marshall Sahlins decides to write a
paper about how the Internet is cultural; he copyrights the paper
(“© 2004 Marshall Sahlins”), he requires that any use of it or any
copies of it maintain the copyright notice and the attribution of

295reuse, modification, norms

authorship (these can be different), and he furthermore allows for
commercial use of the paper. It would then be legal for a publishing
house to take the paper off Sahlins’s Linux-based Web server and
publish it in a collection without having to ask permission, as long
as the paper remains unchanged and he is clearly and unambigu-
ously listed as author of the paper. The publishing house would not
get any rights to the work, and Sahlins would not get any royalties.
If he had specified noncommercial use, the publisher would instead
have needed to contact him and arrange for a separate license (Cre-
ative Commons licenses are nonexclusive), under which he could
demand some share of revenue and his name on the cover of the
book.20 But say he was, instead, a young scholar seeking only peer
recognition and approbation—then royalties would be secondary
to maximum circulation. Creative Commons allows authors to as-
sert, as its members put it, “some rights reserved” or even “no rights
reserved.”

But what if Sahlins had chosen a license that allowed modifica-
tion of his work. This would mean that I, Christopher Kelty, whether
in agreement with or in objection to his work, could download the
paper, rewrite large sections of it, add in my own baroque and id-
iosyncratic scholarship, and write a section that purports to debunk
(or, what could amount to the same, augment) Sahlins’s arguments.
I would then be legally entitled to re-release the paper as “© 2004
Marshall Sahlins, with modifications © 2007 Christopher Kelty,” so
long as Sahlins is identified as the author of the paper. The nature
or extent of the modifications is not legally restricted, but both the
original and the modified version would be legally attributed to
Sahlins (even though he would own only the first paper).

In the course of a number of e-mails, chat sessions, and phone
conversations with Glenn, I raised this example and proposed that
the licenses needed a way to account for it, since it seemed to me
entirely possible that were I to produce a modified work that so dis-
torted Sahlins’s original argument that he did not want to be asso-
ciated with the modified paper, then he should have the right also
to repudiate his identification as author. Sahlins should, legally
speaking, be able to ask me to remove his name from all subsequent
versions of my misrepresentation, thus clearing his good name and
providing me the freedom to continue sullying mine into obscurity.
After hashing it out with the expensive Palo Alto legal firm that
was officially drafting the licenses, we came up with text that said:

296 reuse, modification, norms

“If You create a Derivative Work, upon notice from any Licensor
You must, to the extent practicable, remove from the Derivative
Work any reference to such Licensor or the Original Author, as
requested.”

The bulk of our discussion centered around the need for the
phrase, “to the extent practicable.” Glenn asked me, “How is the
original author supposed to monitor all the possible uses of her
name? How will she enforce this clause? Isn’t it going to be difficult
to remove the name from every copy?” Glenn was imagining a situ-
ation of strict adherence, one in which the presence of the name
on the paper was the same as the reputation of the individual,
regardless of who actually read it. On this theory, until all traces
of the author’s name were expunged from each of these teratomata
circulating in the world, there could be no peace, and no rest for
the wronged.

I paused, then gave the kind of sigh meant to imply that I had
come to my hard-won understandings of culture through arduous
dissertation research: “It probably won’t need to be strictly enforced
in all cases—only in the significant ones. Scholars tend to respond
to each other only in very circumscribed cases, by writing letters to
the editor or by sending responses or rebuttals to the journal that
published the work. It takes a lot of work to really police a reputa-
tion, and it differs from discipline to discipline. Sometimes, drastic
action might be needed, usually not. There is so much misuse and
abuse of people’s arguments and work going on all the time that
people only react when they are directly confronted with serious
abuses. And even so, it is only in cases of negative criticism or mis-
use that people need respond. When a scholar uses someone’s work
approvingly, but incorrectly, it is usually considered petulant (at
best) to correct them publicly.”

“In short,” I said, leaning back in my chair and acting the part
of expert, “it’s like, you know, c’mon—it isn’t all law, there are a
bunch of, you know, informal rules of civility and stuff that govern
that sort of thing.”

Then Glenn said., “Oh, okay, well that’s when we punt to culture.”
When I heard this phrase, I leaned too far back and fell over,

joyfully stunned. Glenn had managed to capture what no amount
of fieldwork, with however many subjects, could have. Some com-
bination of American football, a twist of Hobbes or Holmes, and a
lived understanding of what exactly these copyright licenses are

297reuse, modification, norms

meant to achieve gave this phrase a luminosity I usually associate
only with Balinese cock-fights. It encapsulated, almost as a slogan,
a very precise explanation of what Creative Commons had under-
taken. It was not a theory Glenn proposed with this phrase, but a
strategy in which a particular, if vague, theory of culture played a
role.

For those unfamiliar, a bit of background on U.S. football may
help. When two teams square off on the football field, the offensive
team gets four attempts, called “downs,” to move the ball either ten
yards forward or into the end zone for a score. The first three downs
usually involve one of two strategies: run or pass, run or pass. On
the fourth down, however, the offensive team must either “go for
it” (run or pass), kick a field goal (if close enough to the end zone),
or “punt” the ball to the other team. Punting is a somewhat disap-
pointing option, because it means giving up possession of the ball
to the other team, but it has the advantage of putting the other
team as far back on the playing field as possible, thus decreasing
its likelihood of scoring.

To “punt to culture,” then, suggests that copyright licenses try
three times to legally restrict what a user or consumer of a work
can make of it. By using the existing federal intellectual-property
laws and the rules of license and contract writing, copyright li-
censes articulate to people what they can and cannot do with that
work according to law. While the licenses do not (they cannot)
force people, in any tangible sense, to do one thing or another,
they can use the language of law and contract to warn people, and
perhaps obliquely, to threaten them. If the licenses end up silent
on a point—if there is no “score,” to continue the analogy—then
it’s time to punt to culture. Rather than make more law, or call in
the police, the license strategy relies on culture to fill in the gaps
with people’s own understandings of what is right and wrong, be-
yond the law. It operationalizes a theory of culture, a theory that
emphasizes the sovereignty of nonstate customs and the diversity
of systems of cultural norms. Creative Commons would prefer that
its licenses remain legally minimalist. It would much prefer to
assume—indeed, the licenses implicitly require—the robust, pow-
erful existence of this multifarious, hetero-physiognomic, and for-
midable opponent to the law with neither uniform nor mascot,
hunched at the far end of the field, preparing to, so to speak, clean
law’s clock.

298 reuse, modification, norms

Creative Commons’s “culture” thus seems to be a somewhat vague
mixture of many familiar theories. Culture is an unspecified but
finely articulated set of given, evolved, designed, informal, prac-
ticed, habitual, local, social, civil, or historical norms that are ex-
pected to govern the behavior of individuals in the absence of a
state, a court, a king, or a police force, at one of any number of
scales. It is not monolithic (indeed, my self-assured explanation
concerned only the norms of “academia”), but assumes a diversity
beyond enumeration. It employs elements of relativism—any cul-
ture should be able to trump the legal rules. It is not a hereditary
biological theory, but one that assumes historical contingency and
arbitrary structures.

Certainly, whatever culture is, it is separate from law. Law is, to
borrow Sharon Traweek’s famous phrase, “a culture of no culture”
in this sense. It is not the cultural and normative practices of legal
scholars, judges, lawyers, legislators, and lobbyists that determine
what laws will look like, but their careful, expert, noncultural ra-
tiocination. In this sense, punting to culture implies that laws are
the result of human design, whereas culture is the result of hu-
man action, but not of human design. Law is systematic and trac-
table; culture may have a deep structure, but it is intractable to
human design. It can, however, be channeled and tracked, nudged
or guided, by law.

Thus, Lawrence Lessig, one of the founders of Creative Commons
has written extensively about the “regulation of social meaning,”
using cases such as those involving the use or nonuse of seatbelts
or whether or not to allow smoking in public places. The decision
not to wear a seatbelt, for instance, may have much more to do
with the contextual meaning of putting on a seatbelt (don’t you
trust the cab driver?) than with either the existence of the seatbelt
(or automatic seatbelts, for that matter) or with laws demanding
their use. According to Lessig, the best law can do in the face of
custom is to change the meaning of wearing the seatbelt: to give the
refusal a dishonorable rather than an honorable meaning. Creative
Commons licenses are based on a similar assumption: the law is
relatively powerless in the face of entrenched academic or artistic
customs, and so the best the licenses can do is channel the meaning
of sharing and reuse, of copyright control or infringement. As Glenn
explained in the context of a discussion about a license that would
allow music sampling.

299reuse, modification, norms

We anticipate that the phrase “as appropriate to the medium, genre,
and market niche” might prompt some anxiety, as it leaves things
relatively undefined. But there’s more method here than you might
expect: The definition of “sampling” or “collage” varies across differ-
ent media. Rather than try to define all possible scenarios (including
ones that haven’t happened yet)—which would have the effect of re-
stricting the types of re-uses to a limited set—we took the more laissez
faire approach.

This sort of deference to community values—think of it as “punting
to culture”—is very common in everyday business and contract law.
The idea is that when lawyers have trouble defining the specialized
terms of certain subcultures, they should get out of the way and let
those subcultures work them out. It’s probably not a surprise Creative
Commons likes this sort of notion a lot.21

As in the case of reuse in Connexions, sampling in the music world
can imply a number of different, perhaps overlapping, custom-
ary meanings of what is acceptable and what is not. For Connex-
ions, the trick was to differentiate the cases wherein collaboration
should be encouraged from the cases wherein the legal right to
“sample”—to fork or to create a derived work—was the appropri-
ate course of action. For Creative Commons, the very structure of
the licenses attempts to capture this distinction as such and to al-
low for individuals to make determinations about the meaning of
sampling themselves.22

At stake, then, is the construction of both technologies and legal
licenses that, as Brent and Rich would assert, “make it easy for us-
ers to do the right thing.” The “right thing,” however, is precisely
what goes unstated: the moral and technical order that guides the
design of both licenses and tools. Connexions users are given tools
that facilitate citation, acknowledgment, attribution, and certain
kinds of reuse instead of tools that privilege anonymity or facili-
tate proliferation or encourage nonreciprocal collaborations. By
the same token, Creative Commons licenses, while legally binding,
are created with the aim of changing norms: they promote attri-
bution and citation; they promote fair use and clearly designated
uses; they are written to give users flexibility to decide what kinds
of things should be allowed and what kinds shouldn’t. Without a
doubt, the “right thing” is right for some people and not for oth-
ers—and it is thus political. But the criteria for what is right are not

merely political; the criteria are what constitute the affinity of these
geeks in the first place, what makes them a recursive public. They
see in these instruments the possibility for the creation of authentic
publics whose role is to stand outside power, outside markets, and
to participate in sovereignty, and through this participation to pro-
duce liberty without sacrificing stability.

Conclusion

What happens when geeks modulate the practices that make up
Free Software? What is the intuition or the cultural significance of
Free Software that makes people want to emulate and modulate it?
Creative Commons and Connexions modulate the practices of Free
Software and extend them in new ways. They change the meaning
of shared source code to include shared nonsoftware, and they try
to apply the practices of license writing, coordination, and open-
ness to new domains. At one level, such an activity is fascinating
simply because of what it reveals: in the case of Connexions, it
reveals the problem of determining the finality of a work. How
should the authority, stability, and reliability of knowledge be as-
sessed when work can be rendered permanently modifiable? It is an
activity that reveals the complexity of the system of authorization
and evaluation that has been built in the past.

The intuition that Connexions and Creative Commons draw from
Free Software is an intuition about the authority of knowledge,
about a reorientation of knowledge and power that demands a
response. That response needs to be technical and legal, to be sure,
but it also needs to be public—a response that defines the meaning
of finality publicly and openly and makes modifiability an irrevers-
ible aspect of the process of stabilizing knowledge. Such a commit-
ment is incompatible with the provision of stable knowledge by
unaccountable private parties, whether individuals or corporations
or governments, or by technical fiat. There must always remain the
possibility that someone can question, change, reuse, and modify
according to their needs.

300 reuse, modification, norms

Conclusion

The Cultural Consequences of Free Software

Free Software is changing. In all aspects it looks very different from
when I started, and in many ways the Free Software described herein
is not the Free Software readers will encounter if they turn to the
Internet to find it. But how could it be otherwise? If the argument I
make in Two Bits is at all correct, then modulation must constantly
be occurring, for experimentation never seeks its own conclusion.
A question remains, though: in changing, does Free Software and
its kin preserve the imagination of moral and technical order that
created it? Is the recursive public something that survives, orders,
or makes sense of these changes? Does Free Software exist for more
than its own sake?

In Two Bits I have explored not only the history of Free Software
but also the question of where such future changes will have come

302 conclusion

from. I argue for seeing continuity in certain practices of everyday
life precisely because the Internet and Free Software pervade ev-
eryday life to a remarkable, and growing, degree. Every day, from
here to there, new projects and ideas and tools and goals emerge
everywhere out of the practices that I trace through Free Software:
Connexions and Creative Commons, open access, Open Source syn-
thetic biology, free culture, access to knowledge (a2k), open cola,
open movies, science commons, open business, Open Source yoga,
Open Source democracy, open educational resources, the One Lap-
top Per Child project, to say nothing of the proliferation of wiki-
everything or the “peer production” of scientific data or consumer
services—all new responses to a widely felt reorientation of knowl-
edge and power.1 How is one to know the difference between all
these things? How is one to understand the cultural significance
and consequence of them? Can one distinguish between projects
that promote a form of public sphere that can direct the actions of
our society versus those that favor corporate, individual, or hierar-
chical control over decision making?

Often the first response to such emerging projects is to focus on
the promises and ideology of the people involved. On the one hand,
claiming to be open or free or public or democratic is something
nearly everyone does (including unlikely candidates such as the
defense intelligence agencies of the United States), and one should
therefore be suspicious and critical of all such claims.2 While such
arguments and ideological claims are important, it would be a grave
mistake to focus only on these statements. The “movement”—the
ideological, critical, or promissory aspect—is just one component
of Free Software and, indeed, the one that has come last, after
the other practices were figured out and made legible, replicable,
and modifiable. On the other hand, it is easy for geeks and Free
Software advocates to denounce emerging projects, to say, “But
that isn’t really Open Source or Free Software.” And while it may
be tempting to fix the definition of Free Software once and for all
in order to ensure a clear dividing line between the true sons and
the carpetbaggers, to do so would reduce Free Software to mere
repetition without difference, would sacrifice its most powerful and
distinctive attribute: its responsive, emergent, public character.

But what questions should one ask? Where should scholars or cu-
rious onlookers focus their attention in order to see whether or not
a recursive public is at work? Many of these questions are simple,

303conclusion

practical ones: are software and networks involved at any level?
Do the participants claim to understand Free Software or Open
Source, either in their details or as an inspiration? Is intellectual-
property law a key problem? Are participants trying to coordinate
each other through the Internet, and are they trying to take advan-
tage of voluntary, self-directed contributions of some kind? More
specifically, are participants modulating one of these practices? Are
they thinking about something in terms of source code, or source
and binary? Are they changing or creating new forms of licenses,
contracts, or privately ordered legal arrangements? Are they ex-
perimenting with forms of coordinating the voluntary actions of
large numbers of unevenly distributed people? Are the people who
are contributing aware of or actively pursuing questions of ideol-
ogy, distinction, movement, or opposition? Are these practices rec-
ognized as something that creates the possibility for affinity, rather
than simply arcane “technical” practices that are too complex to
understand or appreciate?

In the last few years, talk of “social software” or “Web 2.0” has
dominated the circuit of geek and entrepreneur conferences and
discussions: Wikipedia, MySpace, Flickr, and YouTube, for ex-
ample. For instance, there are scores and scores of “social” music
sites, with collaborative rating, music sharing, music discovery,
and so forth. Many of these directly use or take inspiration from
Free Software. For all of them, intellectual property is a central
and dominating concern. Key to their novelty is the leveraging and
coordinating of massive numbers of people along restricted lines
(i.e., music preferences that guide music discovery). Some even ad-
vocate or lobby for free(er) access to digital music. But they are not
(yet) what I would identify as recursive publics: most of them are
commercial entities whose structure and technical specifications
are closely guarded and not open to modification. While some such
entities may deal in freely licensed content (for instance, Creative
Commons–licensed music), few are interested in allowing strang-
ers to participate in, modulate, or modify the system as such; they
are interested in allowing users to become consumers in more and
more sophisticated ways, and not necessarily in facilitating a pub-
lic culture of music. They want information and knowledge to be
free, to be sure, but not necessarily the infrastructure that makes
that information available and knowledge possible. Such entities
lack the “recursive” commitment.

304 conclusion

By contrast, some corners of the open-access movement are
more likely to meet this criteria. As the appellation suggests, par-
ticipants see it as a movement, not a corporate or state entity,
a movement founded on practices of copyleft and the modula-
tion of Free Software licensing ideas. The use of scientific data
and the tools for making sense of open access are very often at
the heart of controversy in science (a point often reiterated by sci-
ence and technology studies), and so there is often an argument
about not only the availability of data but its reuse, modification,
and modulation as well. Projects like the BioBricks Foundation
(biobricks.org) and new organizations like the Public Library of
Science (plos.org) are committed to both availability and certain
forms of collective modification. The commitment to becoming a
recursive public, however, raises unprecedented issues about the
nature of quality, reliability, and finality of scientific data and
results—questions that will reverberate throughout the sciences
as a result.

Farther afield, questions of “traditional heritage” claims, the com-
pulsory licensing of pharmaceuticals, or new forms of “crowdsourc-
ing” in labor markets are also open to analysis in the terms I offer
in Two Bits.3 Virtual worlds like Second Life, “a 3D digital world
imagined, created, and owned by its residents,” are increasingly
laboratories for precisely the kinds of questions raised here: such
worlds are far less virtual than most people realize, and the experi-
ments conducted there far more likely to migrate into the so-called
real world before we know it—including both economic and demo-
cratic experiments.4 How far will Second Life go in facilitating a
recursive public sphere? Can it survive both as a corporation and as
a “world”? And of course, there is the question of the “blogosphere”
as a public sphere, as a space of opinion and discussion that is radi-
cally open to the voices of massive numbers of people. Blogging
gives the lie to conventional journalism’s self-image as the public
sphere, but it is by no means immune to the same kinds of prob-
lematic dynamics and polarizations, no more “rational-critical”
than FOX News, and yet . . .

Such examples should indicate the degree to which Two Bits is
focused on a much longer time span than simply the last couple
of years and on much broader issues of political legitimacy and
cultural change. Rather than offer immediate policy prescriptions
or seek to change the way people think about an issue, I have ap-

305conclusion

proached Two Bits as a work of history and anthropology, making
it less immediately applicable in the hopes that it is more lastingly
usable. The stories I have told reach back at least forty years, if not
longer. While it is clear that the Internet as most people know it is
only ten to fifteen years old, it has been “in preparation” since at
least the late 1950s. Students in my classes—especially hip geeks
deep in Free Software apprenticeship—are bewildered to learn that
the arguments and usable pasts they are rehearsing are refinements
and riffs on stories that are as old or older than their parents. This
deeper stability is where the cultural significance of Free Software
lies: what difference does Free Software today introduce with re-
spect to knowledge and power yesterday?

Free Software is a response to a problem, in much the same way
that the Royal Society in the sixteenth century, the emergence of a
publishing industry in the eighteenth century, and the institutions
of the public sphere in the eighteenth and nineteenth centuries were
responses. They responded to the collective challenge of creating
regimes of governance that required—and encouraged—reliable
empirical knowledge as a basis for their political legitimacy. Such
political legitimacy is not an eternal or theoretical problem; it is a
problem of constant real-world practice in creating the infrastruc-
tures by which individuals come to inhabit and understand their
own governance, whether by states, corporations, or machines. If
power seeks consent of the governed—and especially the consent
of the democratic, self-governing kind that has become the global
dominant ideal since the seventeenth century—it must also seek to
ensure the stability and reliability of the knowledge on which that
consent is propped.

Debates about the nature and history of publics and public spheres
have served as one of the main arenas for this kind of questioning,
but, as I hope I have shown here, it is a question not only of public
spheres but of practices, technologies, laws, and movements, of
going concerns which undergo modulation and experimentation in
accord with a social imagination of order both moral and techni-
cal. “Recursive public” as a concept is not meant to replace that
of public sphere. I intend neither for actors nor really for many
scholars to find it generally applicable. I would not want to see it
suddenly discovered everywhere, but principally in tracking the
transformation, proliferation, and differentiation of Free Software
and its derivatives.

306 conclusion

Several threads from the three parts of Two Bits can now be tied
together. The detailed descriptions of Free Software and its modu-
lations should make clear that (1) the reason the Internet looks the
way it does is due to the work of figuring out Free Software, both
before and after it was recognized as such; (2) neither the Inter-
net nor the computer is the cause of a reorientation of knowledge
and power, but both are tools that render possible modulations of
settled practices, modulations that reveal a much older problem
regarding the legitimacy of the means of circulation and produc-
tion of knowledge; (3) Free Software is not an ethical stance, but
a practical response to the revelation of these older problems; and
(4) the best way to understand this response is to see it as a kind of
public sphere, a recursive public that is specific to the technical and
moral imaginations of order in the contemporary world of geeks.

It is possible now to return to the practical and political meaning
of the “singularity” of the Internet, that is, to the fact that there
is only one Internet. This does not mean that there are no other
networks, but only that the Internet is a singular entity and not an
instance of a general type. How is it that the Internet is open in the
same way to everyone, whether an individual or a corporate or a
national entity? How has it become extensible (and, by extension,
defensible) by and to everyone, regardless of their identity, locale,
context, or degree of power?

The singularity of the Internet is both an ontological and an epis-
temological fact; it is a feature of the Internet’s technical configura-
tions and modes of ordering the actions of humans and machines
by protocols and software. But it is also a feature of the technical
and moral imaginations of the people who build, manage, inhabit,
and expand the Internet. Ontologically, the creation and dissemina-
tion of standardized protocols, and novel standard-setting processes
are at the heart of the story. In the case of the Internet, differences
in standards-setting processes are revealed clearly in the form of the
famous Request for Comments system of creating, distributing, and
modifying Internet protocols. The RFC system, just as much as the
Geneva-based International Organization for Standards, reveal the
fault lines of international legitimacy in complex societies depen-
dent on networks, software, and other high-tech forms of knowl-
edge production, organization, and governance. The legitimacy of
standards has massive significance for the abilities of individual
actors to participate in their own recursive publics, whether they

307conclusion

be publics that address software and networks or those that address
education and development. But like the relationship between “law
on the books” and “law in action,” standards depend on the coor-
dinated action and order of human practices.

What’s more, the seemingly obvious line between a legitimate
standard and a marketable product based on these standards causes
nothing but trouble. The case of open systems in the 1980s high-end
computer industry demonstrates how the logic of standardization
is not at all clearly distinguished from the logic of the market.
The open-systems battles resulted in novel forms of cooperation-
within-competition that sought both standardization and competi-
tive advantage at the same time. Open systems was an attempt to
achieve a kind of “singularity,” not only for a network but for a
market infrastructure as well. Open systems sought ways to reform
technologies and markets in tandem. What it ignored was the legal
structure of intellectual property. The failure of open systems re-
veals the centrality of the moral and technical order of intellectual
property—to both technology and markets—and shows how a reli-
ance on this imagination of order literally renders impossible the
standardization of singular market infrastructure. By contrast, the
success of the Internet as a market infrastructure and as a singular
entity comes in part because of the recognition of the limitations of
the intellectual-property system—and Free Software in the 1990s
was the main experimental arena for trying out alternatives.

The singularity of the Internet rests in turn on a counterintui-
tive multiplicity: the multiplicity of the UNIX operating system and
its thousands of versions and imitations and reimplementations.
UNIX is a great example of how novel, unexpected kinds of order
can emerge from high-tech practices. UNIX is neither an academic
(gift) nor a market phenomenon; it is a hybrid model of sharing
that emerged from a very unusual technical and legal context.
UNIX demonstrates how structured practices of sharing produce
their own kind of order. Contrary to the current scholarly consen-
sus that Free Software and its derivatives are a kind of “shadow
economy” (a “sharing” economy, a “peer production” economy,
a “noncommercial” economy), UNIX was never entirely outside
of the mainstream market. The meanings of sharing, distribution,
and profitability are related to the specific technical, legal, and
organizational context. Because AT&T was prevented from com-
mercializing UNIX, because UNIX users were keen to expand and

308 conclusion

adapt it for their own uses, and because its developers were keen
to encourage and assist in such adaptations, UNIX proliferated and
differentiated in ways that few commercial products could have.
But it was never “free” in any sense. Rather, in combination with
open systems, it set the stage for what “free” could come to mean in
the 1980s and 1990s. It was a nascent recursive public, confronting
the technical and legal challenges that would come to define the
practices of Free Software. To suggest that it represents some kind
of “outside” to a functioning economic market based in money is to
misperceive how transformative of markets UNIX and the Internet
(and Free Software) have been. They have initiated an imagination
of moral and technical order that is not at all opposed to ideolo-
gies of market-based governance. Indeed, if anything, what UNIX
and Free Software represent is an imagination of how to change an
entire market-based governance structure—not just specific markets in
things—to include a form of public sphere, a check on the power
of existing authority.

UNIX and Open Systems should thus be seen as early stages of a
collective technical experiment in transforming our imaginations
of order, especially of the moral order of publics, markets, and
self-governing peoples. The continuities and the gradualness of the
change are more apparent in these events than any sudden rupture
or discontinuity that the “invention of the Internet” or the passing of
new intellectual-property laws might suggest. The “reorientation of
knowledge and power” is more dance than earthquake; it is strati-
fied in time, complex in its movements, and takes an experimental
form whose concrete traces are the networks, infrastructures, ma-
chines, laws, and standards left in the wake of the experiments.

Availability, reusability, and modifiability are at the heart of this
reorientation. The experiments of UNIX and open systems would
have come to nothing if they had not also prompted a concur-
rent experimentation with intellectual-property law, of which the
copyleft license is the central and key variable. Richard Stallman’s
creation of GNU EMACS and the controversy over propriety that
it engendered was in many ways an attempt to deal with exactly
the same problem that UNIX vendors and open-systems advocates
faced: how to build extensibility into the software market—except
that Stallman never saw it as a market. For him, software was and
is part of the human itself, constitutive of our very freedom and,
hence, inalienable. Extending software, through collective mutual

309conclusion

aid, is thus tantamount to vitality, progress, and self-actualization.
But even for those who insist on seeing software as mere product,
the problem of extensibility remains. Standardization, standards
processes, and market entry all appear as political problems as
soon as extensibility is denied—and thus the legal solution rep-
resented by copyleft appears as an option, even though it raises
new and troubling questions about the nature of competition and
profitability.

New questions about competition and profitability have emerged
from the massive proliferation of hybrid commercial and academic
forms, forms that bring with them different traditions of sharing,
credit, reputation, control, creation, and dissemination of knowl-
edge and products that require it. The new economic demands
on the university—all too easily labeled neoliberalization or
corporatization—mirror changing demands on industry that it
come to look more like universities, that is, that it give away
more, circulate more, and cooperate more. The development of
UNIX, in its details, is a symptom of these changes, and the suc-
cess of Free Software is an unambiguous witness to them.

The proliferation of hybrid commercial-academic forms in an era
of modifiability and reusability, among the debris of standards,
standards processes, and new experiments in intellectual property,
results in a playing field with a thousand different games, all of
which revolve around renewed experimentation with coordination,
collaboration, adaptability, design, evolution, gaming, playing,
worlds, and worlding. These games are indicative of the triumph
of the American love of entrepreneurialism and experimentalism;
they relinquish the ideals of planning and hierarchy almost abso-
lutely in favor of a kind of embedded, technically and legally com-
plex anarchism. It is here that the idea of a public reemerges: the
ambivalence between relinquishing control absolutely and absolute
distrust of government by the few. A powerful public is a response,
and a solution, so long as it remains fundamentally independent of
control by the few. Hence, a commitment, widespread and growing,
to a recursive public, an attempt to maintain and extend the kinds
of independent, authentic, autotelic public spheres that people en-
counter when they come to an understanding of how Free Software
and the Internet have evolved.

The open-access movement, and examples like Connexions, are at-
tempts at maintaining such publics. Some are conceived as bulwarks

310 conclusion

against encroaching corporatization, while others see themselves
as novel and innovative, but most share some of the practices
hashed out in the evolution of Free Software and the Internet. In
terms of scholarly publishing and open access, the movement has
reignited discussions of ethics, norms, and method. The Mertonian
ideals are in place once more, this time less as facts of scientific
method than as goals. The problem of stabilizing collective knowl-
edge has moved from being an inherent feature of science to being
a problem that needs our attention. The reorientation of knowledge
and power and the proliferation of hybrid commercial-academic
entities in an era of massive dependence on scientific knowledge
and information leads to a question about the stabilization of that
knowledge.

Understanding how Free Software works and how it has devel-
oped along with the Internet and certain practices of legal and
cultural critique may be essential to understanding the reliable
foundation of knowledge production and circulation on which we
still seek to ground legitimate forms of governance. Without Free
Software, the only response to the continuing forms of excess we
associate with illegitimate, unaccountable, unjust forms of gover-
nance might just be mute cynicism. With it, we are in possession of
a range of practical tools, structured responses and clever ways of
working through our complexity toward the promises of a shared
imagination of legitimate and just governance. There is no doubt
room for critique—and many scholars will demand it—but schol-
arly critique will have to learn how to sit, easily or uneasily, with
Free Software as critique. Free Software can also exclude, just as any
public or public sphere can, but this is not, I think, cause for resis-
tance, but cause for joining. The alternative would be to create no
new rules, no new practices, no new procedures—that is, to have
what we already have. Free Software does not belong to geeks, and
it is not the only form of becoming public, but it is one that will
have a profound structuring effect on any forms that follow.

Notes

Introduction

Throughout this volume, some messages referenced are cited by their
“Message-ID,” which should allow anyone interested to access the original
messages through Google Groups (http://groups.google.com).

1 A Note on Terminology: There is still debate about how to refer to
Free Software, which is also known as Open Source Software. The scholarly
community has adopted either FOSS or FLOSS (or F/LOSS): the former
stands for the Anglo-American Free and Open Source Software; the latter
stands for the continental Free, Libre and Open Source Software. Two Bits
sticks to the simple term Free Software to refer to all of these things, ex-
cept where it is specifically necessary to differentiate two or more names,
or to specify people or events so named. The reason is primarily aesthetic
and political, but Free Software is also the older term, as well as the one
that includes issues of moral and social order. I explain in chapter 3 why
there are two terms.

312

2 Michael M. J. Fischer, “Culture and Cultural Analysis as Experimental
Systems.”

3 So, for instance, when a professional society founded on charters and
ideals for membership and qualification speaks as a public, it represents its
members, as when the American Medical Association argues for or against
changes to Medicare. However, if a new group—say, of nurses—seeks
not only to participate in this discussion—which may be possible, even
welcomed—but to change the structure of representation in order to give
themselves status equal to doctors, this change is impossible, for it goes
against the very aims and principles of the society. Indeed, the nurses will
be urged to form their own society, not to join that of the doctors, a propo-
sition which gives the lie to the existing structures of power. By contrast,
a public is an entity that is less controlled and hence more agonistic, such
that nurses might join, speak, and insist on changing the terms of debate,
just as patients, scientists, or homeless people might. Their success, how-
ever, depends entirely on the force with which their actions transform the
focus and terms of the public. Concepts of the public sphere have been
roundly critiqued in the last twenty years for presuming that such “equal-
ity of access” is sufficient to achieve representation, when in fact other
contextual factors (race, class, sex) inherently weight the representative
power of different participants. But these are two different and overlapping
problems: one cannot solve the problem of pernicious, invisible forms of
inequality unless one first solves the problem of ensuring a certain kind of
structural publicity. It is precisely the focus on maintaining publicity for a
recursive public, over against massive and powerful corporate and govern-
mental attempts to restrict it, that I locate as the central struggle of Free
Software. Gender certainly influences who gets heard within Free Software,
for example, but it is a mistake to focus on this inequality at the expense of
the larger, more threatening form of political failure that Free Software ad-
dresses. And I think there are plenty of geeks—man, woman and animal—
who share this sentiment.

4 Wikipedia is perhaps the most widely known and generally familiar
example of what this book is about. Even though it is not identified as such,
it is in fact a Free Software project and a “modulation” of Free Software as
I describe it here. The non–technically inclined reader might keep Wikipe-
dia in mind as an example with which to follow the argument of this book.
I will return to it explicitly in part 3. However, for better or for worse, there
will be no discussion of pornography.

5 Although the term public clearly suggests private as its opposite, Free
Software is not anticommercial. A very large amount of money, both real
and notional, is involved in the creation of Free Software. The term re-

notes to introduction

313

cursive market could also be used, in order to emphasize the importance
(especially during the 1990s) of the economic features of the practice. The
point is not to test whether Free Software is a “public” or a “market,” but
to construct a concept adequate to the practices that constitute it.

6 See, for example, Warner, Publics and Counterpublics, 67–74.
7 Habermas, The Structural Transformation of the Public Sphere, esp.

27–43.
8 Critiques of the demand for availability and the putatively inherent

superiority of transparency include Coombe and Herman, “Rhetorical Vir-
tues” and “Your Second Life?”; Christen, “Gone Digital”; and Anderson and
Bowery, “The Imaginary Politics of Access to Knowledge.”

9 This description of Free Software could also be called an “assem-
blage.” The most recent source for this is Rabinow, Anthropos Today. The
language of thresholds and intensities is most clearly developed by Manuel
DeLanda in A Thousand Years of Non-linear History and in Intensive Science
and Virtual Philosophy. The term problematization, from Rabinow (which
he channels from Foucault), is a synonym for the phrase “reorientation of
knowledge and power” as I use it here.

10 See Kelty, “Culture’s Open Sources.”
11 The genealogy of the term commons has a number of sources. An

obvious source is Garrett Hardin’s famous 1968 article “The Tragedy of
the Commons.” James Boyle has done more than anyone to specify the
term, especially during a 2001 conference on the public domain, which
included the inspired guest-list juxtaposition of the appropriation-happy
musical collective Negativland and the dame of “commons” studies, Elinor
Ostrom, whose book Governing the Commons has served as a certain inspira-
tion for thinking about commons versus public domains. Boyle, for his part,
has ceaselessly pushed the “environmental” metaphor of speaking for the
public domain as environmentalists of the 1960s and 1970s spoke for the
environment (see Boyle, “The Second Enclosure Movement and the Con-
struction of the Public Domain” and “A Politics of Intellectual Property”).
The term commons is useful in this context precisely because it distinguishes
the “public domain” as an imagined object of pure public transaction and
coordination, as opposed to a “commons,” which can consist of privately
owned things/spaces that are managed in such a fashion that they effec-
tively function like a “public domain” is imagined to (see Boyle, “The Public
Domain”; Hess and Ostrom, Understanding Knowledge as a Commons).

12 Marcus and Fischer, Anthropology as Cultural Critique; Marcus and
Clifford, Writing Culture; Fischer, Emergent Forms of Life and the Anthropo-
logical Voice; Marcus, Ethnography through Thick and Thin; Rabinow, Essays
on the Anthropology of Reason and Anthropos Today.

notes to introduction

314

13 The language of “figuring out” has its immediate source in the work
of Kim Fortun, “Figuring Out Ethnography.” Fortun’s work refines two
other sources, the work of Bruno Latour in Science in Action and that of
Hans-Jorg Rheinberger in Towards History of Epistemic Things. Latour de-
scribes the difference between “science made” and “science in the making”
and how the careful analysis of new objects can reveal how they come to
be. Rheinberger extends this approach through analysis of the detailed
practices involved in figuring out a new object or a new process—practices
which participants cannot quite name or explain in precise terms until
after the fact.

14 Raymond, The Cathedral and the Bazaar.
15 The literature on “virtual communities,” “online communities,” the

culture of hackers and geeks, or the social study of information technology
offers important background information, although it is not the subject of
this book. A comprehensive review of work in anthropology and related
disciplines is Wilson and Peterson, “The Anthropology of Online Communi-
ties.” Other touchstones are Miller and Slater, The Internet; Carla Freeman,
High Tech and High Heels in the Global Economy; Hine, Virtual Ethnography;
Kling, Computerization and Controversy; Star, The Cultures of Computing;
Castells, The Rise of the Network Society; Boczkowski, Digitizing the News.
Most social-science work in information technology has dealt with ques-
tions of inequality and the so-called digital divide, an excellent overview
being DiMaggio et al., “From Unequal Access to Differentiated Use.” Be-
yond works in anthropology and science studies, a number of works from
various other disciplines have recently taken up similar themes, especially
Adrian MacKenzie, Cutting Code; Galloway, Protocol; Hui Kyong Chun, Con-
trol and Freedom; and Liu, Laws of Cool. By contrast, if social-science stud-
ies of information technology are set against a background of historical
and ethnographic studies of “figuring out” problems of specific information
technologies, software, or networks, then the literature is sparse. Examples
of anthropology and science studies of figuring out include Barry, Political
Machines; Hayden, When Nature Goes Public; and Fortun, Advocating Bhopal.
Matt Ratto has also portrayed this activity in Free Software in his disserta-
tion, “The Pressure of Openness.”

16 In addition to Abbate and Salus, see Norberg and O’Neill, Transform-
ing Computer Technology; Naughton, A Brief History of the Future; Hafner,
Where Wizards Stay Up Late; Waldrop, The Dream Machine; Segaller, Nerds
2.0.1. For a classic autodocumentation of one aspect of the Internet, see
Hauben and Hauben, Netizens.

17 Kelty, “Culture’s Open Sources”; Coleman, “The Social Construction
of Freedom”; Ratto, “The Pressure of Openness”; Joseph Feller et al., Per-

notes to introduction

315

spectives on Free and Open Source Software; see also http://freesoftware.mit
.edu/, organized by Karim Lakhani, which is a large collection of work on
Free Software projects. Early work in this area derived both from the writ-
ings of practitioners such as Raymond and from business and management
scholars who noticed in Free Software a remarkable, surprising set of seem-
ing contradictions. The best of these works to date is Steven Weber, The
Success of Open Source. Weber’s conclusions are similar to those presented
here, and he has a kind of cryptoethnographic familiarity (that he does not
explicitly avow) with the actors and practices. Yochai Benkler’s Wealth of
Networks extends and generalizes some of Weber’s argument.

18 Max Weber, “Objectivity in the Social Sciences and Social Policy,” 68.
19 Despite what might sound like a “shoot first, ask questions later”

approach, the design of this project was in fact conducted according to
specific methodologies. The most salient is actor-network theory: Latour,
Science in Action; Law, “Technology and Heterogeneous Engineering”;
Callon, “Some Elements of a Sociology of Translation”; Latour, Pandora’s
Hope; Latour, Re-assembling the Social; Callon, Laws of the Markets; Law and
Hassard, Actor Network Theory and After. Ironically, there have been no
actor-network studies of networks, which is to say, of particular informa-
tion and communication technologies such as the Internet. The confusion
of the word network (as an analytical and methodological term) with that
of network (as a particular configuration of wires, waves, software, and
chips, or of people, roads, and buses, or of databases, names, and diseases)
means that it is necessary to always distinguish this-network-here from
any-network-whatsoever. My approach shares much with the ontological
questions raised in works such as Law, Aircraft Stories; Mol, The Body Mul-
tiple; Cussins, “Ontological Choreography”; Charis Thompson, Making Par-
ents; and Dumit, Picturing Personhood.

20 I understand a concern with scientific infrastructure to begin with
Steve Shapin and Simon Schaffer in Leviathan and the Air Pump, but the
genealogy is no doubt more complex. It includes Shapin, The Social History
of Truth; Biagioli, Galileo, Courtier; Galison, How Experiments End and Im-
age and Logic; Daston, Biographies of Scientific Objects; Johns, The Nature
of the Book. A whole range of works explore the issue of scientific tools
and infrastructure: Kohler, Lords of the Fly; Rheinberger, Towards a His-
tory of Epistemic Things; Landecker, Culturing Life; Keating and Cambro-
sio, Biomedical Platforms. Bruno Latour’s “What Rules of Method for the
New Socio-scientific Experiments” provides one example of where science
studies might go with these questions. Important texts on the subject of
technical infrastructures include Walsh and Bayma, “Computer Networks
and Scientific Work”; Bowker and Star, Sorting Things Out; Edwards, The

notes to introduction

316 notes to chapter 1

Closed World; Misa, Brey, and Feenberg, Modernity and Technology; Star
and Ruhleder, “Steps Towards an Ecology of Infrastructure.”

21 Dreyfus, On the Internet; Dean, “Why the Net Is Not a Public Sphere.”
22 In addition, see Lippmann, The Phantom Public; Calhoun, Habermas

and the Public Sphere; Latour and Weibel, Making Things Public. The de-
bate about social imaginaries begins alternately with Benedict Anderson’s
Imagined Communities or with Cornelius Castoriadis’s The Imaginary Institu-
tion of Society; see also Chatterjee, “A Response to Taylor’s ‘Modes of Civil
Society’ ”; Gaonkar, “Toward New Imaginaries”; Charles Taylor, “Modes of
Civil Society” and Sources of the Self.

1. Geeks and Recursive Publics

1 For the canonical story, see Levy, Hackers. Hack referred to (and still
does) a clever use of technology, usually unintended by the maker, to
achieve some task in an elegant manner. The term has been successfully
redefined by the mass media to refer to computer users who break into
and commit criminal acts on corporate or government or personal com-
puters connected to a network. Many self-identified hackers insist that the
criminal element be referred to as crackers (see, in particular, the entries
on “Hackers,” “Geeks” and “Crackers” in The Jargon File, http://www.catb
.org/~esr/jargon/, also published as Raymond, The New Hackers’ Dictio-
nary). On the subject of definitions and the cultural and ethical charac-
teristics of hackers, see Coleman, “The Social Construction of Freedom,”
chap. 2.

2 One example of the usage of geek is in Star, The Cultures of Computing.
Various denunciations (e.g., Barbrook and Cameron, “The California Ideol-
ogy”; Borsook, Technolibertarianism) tend to focus on journalistic accounts
of an ideology that has little to do with what hackers, geeks, and entre-
preneurs actually make. A more relevant categorical distinction than that
between hackers and geeks is that between geeks and technocrats; in the
case of technocrats, the “anthropology of technocracy” is proposed as the
study of the limits of technical rationality, in particular the forms through
which “planning” creates “gaps in the form that serve as ‘targets of in-
tervention’ ” (Riles, “Real Time,” 393). Riles’s “technocrats” are certainly
not the “geeks” I portray here (or at least, if they are, it is only in their
frustrating day jobs). Geeks do have libertarian, specifically Hayekian or
Feyerabendian leanings, but are more likely to see technical failures not
as failures of planning, but as bugs, inefficiencies, or occasionally as the
products of human hubris or stupidity that is born of a faith in planning.

317notes to chapter 1

3 See The Geek Code, http://www.geekcode.com/.
4 Geeks are also identified often by the playfulness and agility with

which they manipulate these labels and characterizations. See Michael
M. J. Fischer, “Worlding Cyberspace” for an example.

5 Taylor, Modern Social Imaginaries, 86.
6 On the subject of imagined communities and the role of information

technologies in imagined networks, see Green, Harvey, and Knox, “Scales
of Place and Networks”; and Flichy, The Internet Imaginaire.

7 Taylor, Modern Social Imaginaries, 32.
8 Ibid., 33–48. Taylor’s history of the transition from feudal nobility

to civil society to the rise of republican democracies (however incom-
plete) is comparable to Foucault’s history of the birth of biopolitics, in La
naissance de la biopolitique, as an attempt to historicize governance with
respect to its theories and systems, as well as within the material forms
it takes.

9 Ricoeur, Lectures on Ideology and Utopia, 2.
10 Geertz, “Ideology as a Cultural System”; Mannheim, Ideology and

Utopia. Both, of course, also signal the origin of the scientific use of the
term proximately with Karl Marx’s “German Ideology” and more distantly
in the Enlightenment writings of Destutt de Tracy.

11 Geertz, “Ideology as a Cultural System,” 195.
12 Ibid., 208–13.
13 The depth and the extent of this issue is obviously huge. Ricoeur’s

Lectures on Ideology and Utopia is an excellent analysis to the problem of
ideology prior to 1975. Terry Eagleton’s books The Ideology of the Aesthetic
and Ideology: An Introduction are Marxist explorations that include discus-
sions of hegemony and resistance in the context of artistic and literary
theory in the 1980s. Slavoj Žižek creates a Lacanian-inspired algebraic
system of analysis that combines Marxism and psychoanalysis in novel
ways (see Žižek, Mapping Ideology). There is even an attempt to replace
the concept of ideology with a metaphor of “software” and “memes” (see
Balkin, Cultural Software). The core of the issue of ideology as a practice
(and the vicissitudes of materialism that trouble it) are also at the heart of
works by Pierre Bourdieu and his followers (on the relationship of ideology
and hegemony, see Laclau and Mouffe, Hegemony and Socialist Strategy). In
anthropology, see Comaroff and Comaroff, Ethnography and the Historical
Imagination.

14 Ricoeur, Lectures on Ideology and Utopia, 10.
15 Taylor, Modern Social Imaginaries, 23.
16 Ibid., 25.
17 Ibid., 26–27.

318 notes to chapter 1

18 Ibid., 28.
19 The question of gender plagues the topic of computer culture. The

gendering of hackers and geeks and the more general exclusion of women
in computing have been widely observed by academics. I can do no more
here than direct readers to the increasingly large and sophisticated litera-
ture on the topic. See especially Light, “When Computers Were Women”;
Turkle, The Second Self and Life on the Screen. With respect to Free Soft-
ware, see Nafus, Krieger, Leach, “Patches Don’t Have Gender.” More gen-
erally, see Kirkup et al., The Gendered Cyborg; Downey, The Machine in
Me; Faulkner, “Dualisms, Hierarchies and Gender in Engineering”; Grint
and Gill, The Gender-Technology Relation; Helmreich, Silicon Second Nature;
Herring, “Gender and Democracy in Computer-Mediated Communica-
tion”; Kendall, “ ‘Oh No! I’m a NERD!’ ”; Margolis and Fisher, Unlocking
the Clubhouse; Green and Adam, Virtual Gender; P. Hopkins, Sex/Machine;
Wajcman, Feminism Confronts Technology and “Reflections on Gender and
Technology Studies”; and Fiona Wilson, “Can’t Compute, Won’t Compute.”
Also see the novels and stories of Ellen Ullman, including Close to the Ma-
chine and The Bug: A Novel.

20 Originally coined by Steward Brand, the phrase was widely cited
after it appeared in Barlow’s 1994 article “The Economy of Ideas.”

21 On the genesis of “virtual communities” and the role of Steward
Brand, see Turner, “Where the Counterculture Met the New Economy.”

22 Warner, “Publics and Counterpublics,” 51.
23 Ibid., 51–52. See also Warner, Publics and Counterpublics, 69.
24 The rest of this message can be found in the Silk-list archives at http://

groups.yahoo.com/group/silk-list/message/2869 (accessed 18 August
2006). The reference to “Fling” is to a project now available at http://fling
.sourceforge.net/ (accessed 18 August 2006). The full archives of Silk-list
can be found at http://groups.yahoo.com/group/silk-list/ and the full ar-
chives of the FoRK list can be found at http://www.xent.com/mailman/
listinfo/fork/.

25 Vinge, “The Coming Technological Singularity.”
26 Moore’s Law—named for Gordon Moore, former head of Intel—states

that the speed and capacity of computer central processing units (CPUs)
doubles every eighteen months, which it has done since roughly 1970.
Metcalfe’s Law—named for Robert Metcalfe, inventor of Ethernet—states
that the utility of a network equals the square of the number of users,
suggesting that the number of things one can do with a network increases
exponentially as members are added linearly.

27 This quotation from the 1990s is attributed to Electronic Frontier
Foundation’s founder and “cyber-libertarian” John Gilmore. Whether there

319

is any truth to this widespread belief expressed in the statement is not
clear. On the one hand, the protocol to which this folklore refers—the
general system of “message switching” and, later, “packet switching” in-
vented by Paul Baran at RAND Corporation—does seem to lend itself to
robustness (on this history, see Abbate, Inventing the Internet). However,
it is not clear that nuclear threats were the only reason such robustness
was a design goal; simply to ensure communication in a distributed net-
work was necessary in itself. Nonetheless, the story has great currency
as a myth of the nature and structure of the Internet. Paul Edwards sug-
gests that both stories are true (“Infrastructure and Modernity,” 216–20,
225n13).

28 Lessig, Code and Other Laws of Cyberspace. See also Gillespie, “En-
gineering a Principle” on the related history of the “end to end” design
principle.

29 This is constantly repeated on the Internet and attributed to David
Clark, but no one really knows where or when he stated it. It appears
in a 1997 interview of David Clark by Jonathan Zittrain, the transcript
of which is available at http://cyber.law.harvard.edu/jzfallsem//trans/
clark/ (accessed 18 August 2006).

30 Ashish “Hash” Gulhati, e-mail to Silk-list mailing list, 9 September
2000, http://groups.yahoo.com/group/silk-list/message/3125.

31 Eugen Leitl, e-mail to Silk-list mailing list, 9 September 2000, http://
groups.yahoo.com/group/silk-list/message/3127. Python is a program-
ming language. Mojonation was a very promising peer-to-peer application
in 2000 that has since ceased to exist.

32 In particular, this project focuses on the Transmission Control Pro-
tocol (TCP), the User Datagram Protocol (UDP), and the Domain Name
System (DNS). The first two have remained largely stable over the last
thirty years, but the DNS system has been highly politicized (see Mueller,
Ruling the Root).

33 On Internet standards, see Schmidt and Werle, Coordinating Technol-
ogy; Abbate and Kahin, Standards Policy for Information Infrastructure.

2. Reformers, Polymaths, Transhumanists

1 Foucault, “What Is Enlightenment,” 319.
2 Stephenson, In the Beginning Was the Command Line.
3 Message-ID: tht55.221960$701.2930569@news4.giganews.com.
4 The Apple-Microsoft conflict was given memorable expression by Um-

berto Eco in a widely read piece that compared the Apple user interface

notes to chapter 2

320

to Catholicism and the PC user interface to Protestantism (“La bustina di
Minerva,” Espresso, 30 September 1994, back page).

5 One entry on Wikipedia differentiates religious wars from run-of-the-
mill “flame wars” as follows: “Whereas a flame war is usually a particular
spate of flaming against a non-flamy background, a holy war is a drawn-
out disagreement that may last years or even span careers” (“Flaming
[Internet],” http://en.wikipedia.org/wiki/Flame_war [accessed 16 Janu-
ary 2006]).

6 Message-ID: 369tva$8l0@csnews.cs.colorado.edu.
7 Message-ID: c1dz4.145472$mb.2669517@news6.giganews.com. It

should be noted, in case the reader is unsure how serious this is, that EGCS
stood for Extended GNU Compiler System, not Ecumenical GNU Compiler
Society.

8 “Martin Luther, Meet Linus Torvalds,” Salon, 12 November 1998,
http://archive.salon.com/21st/feature/1998/11/12feature.html (accessed
5 February 2005).

9 See http://www.stallman.org/saint.html (accessed 5 February 2005)
and http://www.dina.kvl.dk/~abraham/religion/ (accessed 5 February
2005). On EMACS, see chapter 6.

10 Message-ID: 6ms27l$6e1@bgtnsc01.worldnet.att.net. In one very
humorous case the comparison is literalized “Microsoft acquires Catholic
Church” (Message-ID: gaijin-870804300-dragonwing@sec.lia.net).

11 Paul Fusco, “The Gospel According to Joy,” New York Times, 27 March
1988, Sunday Magazine, 28.

12 See, for example, Matheson, The Imaginative World of the Reforma-
tion. There is rigorous debate about the relation of print, religion, and
capitalism: one locus classicus is Eisenstein’s The Printing Press as an Agent
of Change, which was inspired by McLuhan, The Gutenberg Galaxy. See also
Ian Green, Print and Protestantism in Early Modern England and The Chris-
tian’s ABCs; Chadwick, The Early Reformation on the Continent, chaps. 1–3.

13 Crain, The Story of A, 16–17.
14 Ibid., 20–21.
15 At a populist level, this was captured by John Perry Barlow’s “Dec-

laration of Independence of the Internet,” http://homes.eff.org/~barlow/
Declaration-Final.html.

16 Foucault, “What Is Enlightenment,” 309–10.
17 Ibid., 310.
18 Ibid., 310.
19 Adrian Gropper, interview by author, 28 November 1998.
20 Adrian Gropper, interview by author, 28 November 1998.
21 Sean Doyle, interview by author, 30 March 1999.

notes to chapter 2

321

22 Feyerabend, Against Method, 215–25.
23 One of the ways Adrian discusses innovation is via the argument of

the Harvard Business School professor Clayton Christensen’s The Innovator’s
Dilemma. It describes “sustaining vs. disruptive” technologies as less an is-
sue of how technologies work or what they are made of, and more an issue
of how their success and performance are measured. See Adrian Gropper,
“The Internet as a Disruptive Technology,” Imaging Economics, December
2001, http://www.imagingeconomics.com/library/200112-10.asp (ac-
cessed 19 September 2006).

24 On kinds of civic duty, see Fortun and Fortun, “Scientific Imaginar-
ies and Ethical Plateaus in Contemporary U.S. Toxicology.”

25 There is, in fact, a very specific group of people called transhuman-
ists, about whom I will say very little. I invoke the label here because I
think certain aspects of transhumanism are present across the spectrum of
engineers, scientists, and geeks.

26 See the World Transhumanist Association, http://transhumanism
.org/ (accessed 1 December 2003) or the Extropy Institute, http://www
.extropy.org/ (accessed 1 December 2003). See also Doyle, Wetwares, and
Battaglia, “For Those Who Are Not Afraid of the Future,” for a sidelong
glance.

27 Huxley, New Bottles for New Wine, 13–18.
28 The computer scientist Bill Joy wrote a long piece in Wired warn-

ing of the outcomes of research conducted without ethical safeguards and
the dangers of eugenics in the past, “Why the Future Doesn’t Need Us,”
Wired 8.4 [April 2000], http://www.wired.com/wired/archive/8.04/joy
.html (accessed 27 June 2005).

29 Vinge, “The Coming Technological Singularity.”
30 Eugen Leitl, e-mail to Silk-list mailing list, 16 May 2000, http://groups

.yahoo.com/group/silk-list/message/2410.
31 Eugen Leitl, e-mail to Silk-list mailing list, 7 August 2000, http://groups

.yahoo.com/group/silk-list/message/2932.
32 Friedrich A. Hayek, Law, Legislation and Liberty, 1:20.

3. The Movement

1 For instance, Richard Stallman writes, “The Free Software movement
and the Open Source movement are like two political camps within the free
software community. Radical groups in the 1960s developed a reputation
for factionalism: organizations split because of disagreements on details
of strategy, and then treated each other as enemies. Or at least, such is the

notes to chapter 3

322

image people have of them, whether or not it was true. The relationship
between the Free Software movement and the Open Source movement is
just the opposite of that picture. We disagree on the basic principles, but
agree more or less on the practical recommendations. So we can and do
work together on many specific projects. We don’t think of the Open Source
movement as an enemy. The enemy is proprietary software” (“Why ‘Free
Software’ Is Better than ‘Open Source,’ ” GNU’s Not Unix! http://www.gnu
.org/philosophy/free-software-for-freedom.html [accessed 9 July 2006]).
By contrast, the Open Source Initiative characterizes the relationship as
follows: “How is ‘open source’ related to ‘free software’? The Open Source
Initiative is a marketing program for free software. It’s a pitch for ‘free
software’ because it works, not because it’s the only right thing to do. We’re
selling freedom on its merits” (http://www.opensource.org/advocacy/faq
.php [accessed 9 July 2006]). There are a large number of definitions of
Free Software: canonical definitions include Richard Stallman’s writings
on the Free Software Foundation’s Web site, www.fsf.org, including the
“Free Software Definition” and “Confusing Words and Phrases that Are
Worth Avoiding.” From the Open Source side there is the “Open Source
Definition” (http://www.opensource.org/licenses/). Unaffiliated defini-
tions can be found at www.freedomdefined.org.

2 Moody, Rebel Code, 193.
3 Frank Hecker, quoted in Hamerly and Paquin, “Freeing the Source,”

198.
4 See Moody, Rebel Code, chap. 11, for a more detailed version of the

story.
5 Bruce Perens, “The Open Source Definition,” 184.
6 Steven Weber, The Success of Open Source.
7 “Netscape Announces Plans to Make Next-Generation Communicator

Source Code Available Free on the Net,” Netscape press release, 22 January
1998, http://wp.netscape.com/newsref/pr/newsrelease558.html (accessed
25 Sept 2007).

8 On the history of software development methodologies, see Mahoney,
“The Histories of Computing(s)” and “The Roots of Software Engineering.”

9 Especially good descriptions of what this cycle is like can be found in
Ullman, Close to the Machine and The Bug.

10 Jamie Zawinski, “resignation and postmortem,” 31 March 1999,
http://www.jwz.org/gruntle/nomo.html.

11 Ibid.
12 Ibid.
13 Ibid.
14 Ibid.

notes to chapter 3

323

15 “Open Source Pioneers Meet in Historic Summit,” press release, 14
April 1998, O’Reilly Press, http://press.oreilly.com/pub/pr/796.

16 See Hamerly and Paquin, “Freeing the Source.” The story is elegantly
related in Moody, Rebel Code, 182–204. Raymond gives Christine Petersen
of the Foresight Institute credit for the term open source.

17 From Raymond, The Cathedral and the Bazaar. The changelog is
available online only: http://www.catb.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar/.

18 Josh McHugh, “For the Love of Hacking,” Forbes, 10 August 1998,
94–100.

19 On social movements—the closest analog, developed long ago—see
Gerlach and Hine, People, Power, Change, and Freeman and Johnson, Waves
of Protest. However, the Free Software and Open Source Movements do not
have “causes” of the kind that conventional movements do, other than the
perpetuation of Free and Open Source Software (see Coleman, “Political
Agnosticism”; Chan, “Coding Free Software”). Similarly, there is no single
development methodology that would cover only Open Source. Advocates
of Open Source are all too willing to exclude those individuals or organiza-
tions who follow the same “development methodology” but do not use a Free
Software license—such as Microsoft’s oft-mocked “shared-source” program.
The list of licenses approved by both the Free Software Foundation and the
Open Source Initiative is substantially the same. Further, the Debian Free
Software Guidelines and the “Open Source Definition” are almost identical
(compare http://www.gnu.org/philosophy/license-list.html with http://
www.opensource.org/licenses/ [both accessed 30 June 2006]).

20 It is, in the terms of Actor Network Theory, a process of “enrollment”
in which participants find ways to rhetorically align—and to disalign—
their interests. It does not constitute the substance of their interest, how-
ever. See Latour, Science in Action; Callon, “Some Elements of a Sociology
of Translation.”

21 Coleman, “Political Agnosticism.”
22 See, respectively, Raymond, The Cathedral and the Bazaar, and Wil-

liams, Free as in Freedom.
23 For example, Castells, The Internet Galaxy, and Weber, The Success of

Open Source both tell versions of the same story of origins and development.

4. Sharing Source Code

1 “Sharing” source code is not the only kind of sharing among geeks
(e.g., informal sharing to communicate ideas), and UNIX is not the only

notes to chapter 4

324

shared software. Other examples that exhibit this kind of proliferation
(e.g., the LISP programming language, the TeX text-formatting system)
are as ubiquitous as UNIX today. The inverse of my argument here is that
selling produces a different kind of order: many products that existed in
much larger numbers than UNIX have since disappeared because they
were never ported or forked; they are now part of dead-computer museums
and collections, if they have survived at all.

2 The story of UNIX has not been told, and yet it has been told hundreds
of thousands of times. Every hacker, programmer, computer scientist, and
geek tells a version of UNIX history—a usable past. Thus, the sources
for this chapter include these stories, heard and recorded throughout my
fieldwork, but also easily accessible in academic work on Free Software,
which enthusiastically participates in this potted-history retailing. See, for
example, Steven Weber, The Success of Open Source; Castells, The Internet
Galaxy; Himanen, The Hacker Ethic; Benkler, The Wealth of Networks. To
date there is but one detailed history of UNIX—A Quarter Century of UNIX,
by Peter Salus—which I rely on extensively. Matt Ratto’s dissertation, “The
Pressure of Openness,” also contains an excellent analytic history of the
events told in this chapter.

3 The intersection of UNIX and TCP/IP occurred around 1980 and
led to the famous switch from the Network Control Protocol (NCP) to the
Transmission Control Protocol/Internet Protocol that occurred on 1 Janu-
ary 1983 (see Salus, Casting the Net).

4 Light, “When Computers Were Women”; Grier, When Computers Were
Human.

5 There is a large and growing scholarly history of software: Wexel-
blat, History of Programming Languages and Bergin and Gibson, History of
Programming Languages 2 are collected papers by historians and partici-
pants. Key works in history include Campbell-Kelly, From Airline Reserva-
tions to Sonic the Hedgehog; Akera and Nebeker, From 0 to 1; Hashagen,
Keil-Slawik, and Norberg, History of Computing—Software Issues; Donald
A. MacKenzie, Mechanizing Proof. Michael Mahoney has written by far
the most about the early history of software; his relevant works include
“The Roots of Software Engineering,” “The Structures of Computation,”
“In Our Own Image,” and “Finding a History for Software Engineering.”
On UNIX in particular, there is shockingly little historical work. Martin
Campbell-Kelly and William Aspray devote a mere two pages in their gen-
eral history Computer. As early as 1978, Ken Thompson and Dennis Ritchie
were reflecting on the “history” of UNIX in “The UNIX Time-Sharing Sys-
tem: A Retrospective.” Ritchie maintains a Web site that contains a valu-
able collection of early documents and his own reminiscences (http://www

notes to chapter 4

325

.cs.bell-labs.com/who/dmr/). Mahoney has also conducted interviews with
the main participants in the development of UNIX at Bell Labs. These inter-
views have not been published anywhere, but are drawn on as background
in this chapter (interviews are in Mahoney’s personal files).

6 Turing, “On Computable Numbers.” See also Davis, Engines of Logic,
for a basic explanation.

7 Sharing programs makes sense in this period only in terms of user
groups such as SHARE (IBM) and USE (DEC). These groups were indeed
sharing source code and sharing programs they had written (see Akera,
“Volunteerism and the Fruits of Collaboration”), but they were constituted
around specific machines and manufacturers; brand loyalty and custom-
ization were familiar pursuits, but sharing source code across dissimilar
computers was not.

8 See Waldrop, The Dream Machine, 142–47.
9 A large number of editors were created in the 1970s; Richard Stall-

man’s EMACS and Bill Joy’s vi remain the most well known. Douglas
Engelbart is somewhat too handsomely credited with the creation of the
interactive computer, but the work of Butler Lampson and Peter Deutsch
in Berkeley, as well as that of the Multics team, Ken Thompson, and others
on early on-screen editors is surely more substantial in terms of the fun-
damental ideas and problems of manipulating text files on a screen. This
story is largely undocumented, save for in the computer-science literature
itself. On Engelbart, see Bardini, Bootstrapping.

10 See Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog.
11 Ibid., 107.
12 Campbell-Kelly and Aspray, Computer, 203–5.
13 Ultimately, the Department of Justice case against IBM used bun-

dling as evidence of monopolistic behavior, in addition to claims about
the creation of so-called Plug Compatible Machines, devices that were
reverse-engineered by meticulously constructing both the mechanical in-
terface and the software that would communicate with IBM mainframes.
See Franklin M. Fischer, Folded, Spindled, and Mutilated; Brock, The Second
Information Revolution.

14 The story of this project and the lessons Brooks learned are the
subject of one of the most famous software-development handbooks, The
Mythical Man-Month, by Frederick Brooks.

15 The computer industry has always relied heavily on trade secret,
much less so on patent and copyright. Trade secret also produces its own
form of order, access, and circulation, which was carried over into the
early software industry as well. See Kidder, The Soul of a New Machine for
a classic account of secrecy and competition in the computer industry.

notes to chapter 4

326

16 On time sharing, see Lee et al., “Project MAC.” Multics makes an
appearance in nearly all histories of computing, the best resource by far
being Tom van Vleck’s Web site http://www.multicians.org/.

17 Some widely admired technical innovations (many of which were
borrowed from Multics) include: the hierarchical file system, the command
shell for interacting with the system; the decision to treat everything, in-
cluding external devices, as the same kind of entity (a file), the “pipe” oper-
ator which allowed the output of one tool to be “piped” as input to another
tool, facilitating the easy creation of complex tasks from simple tools.

18 Salus, A Quarter Century of UNIX, 33–37.
19 Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, 143.
20 Ritchie’s Web site contains a copy of a 1974 license (http://cm.bell-labs

.com/cm/cs/who/dmr/licenses.html) and a series of ads that exemplify the
uneasy positioning of UNIX as a commercial product (http://cm.bell-labs
.com/cm/cs/who/dmr/unixad.html). According to Don Libes and Sandy
Ressler, “The original licenses were source licenses. . . . [C]ommercial in-
stitutions paid fees on the order of $20,000. If you owned more than one
machine, you had to buy binary licenses for every additional machine [i.e.,
you were not allowed to copy the source and install it] you wanted to in-
stall UNIX on. They were fairly pricey at $8000, considering you couldn’t
resell them. On the other hand, educational institutions could buy source
licenses for several hundred dollars—just enough to cover Bell Labs’ ad-
ministrative overhead and the cost of the tapes” (Life with UNIX, 20–21).

21 According to Salus, this licensing practice was also a direct result
of Judge Thomas Meaney’s 1956 antitrust consent decree which required
AT&T to reveal and to license its patents for nominal fees (A Quarter
Century of UNIX, 56); see also Brock, The Second Information Revolution,
116–20.

22 Even in computer science, source code was rarely formally shared,
and more likely presented in the form of theorems and proofs, or in various
idealized higher-level languages such as Donald Knuth’s MIX language for
presenting algorithms (Knuth, The Art of Computer Programming). Snippets
of actual source code are much more likely to be found in printed form in
handbooks, manuals, how-to guides, and other professional publications
aimed at training programmers.

23 The simultaneous development of the operating system and the
norms for creating, sharing, documenting, and extending it are often re-
ferred to as the “UNIX philosophy.” It includes the central idea that one
should build on the ideas (software) of others (see Gancarz, The Unix Phi-
losophy and Linux and the UNIX Philosophy). See also Raymond, The Art of
UNIX Programming.

notes to chapter 4

327

24 Bell Labs threatened the nascent UNIX NEWS newsletter with trade-
mark infringement, so “USENIX” was a concession that harkened back to
the original USE users’ group for DEC machines, but avoided explicitly
using the name UNIX. Libes and Ressler, Life with UNIX, 9.

25 Salus, A Quarter Century of Unix, 138.
26 Ibid., emphasis added.
27 Ken Thompson and Dennis Ritchie, “The Unix Operating System,”

Bell Systems Technical Journal (1974).
28 Greg Rose, quoted in Lions, Commentary, n.p.
29 Lions, Commentary, n.p.
30 Ibid.
31 Tanenbaum’s two most famous textbooks are Operating Systems and

Computer Networks, which have seen three and four editions respectively.
32 Tanenbaum was not the only person to follow this route. The other

acknowledged giant in the computer-science textbook world, Douglas
Comer, created Xinu and Xinu-PC (UNIX spelled backwards) in Operating
Systems Design in 1984.

33 McKusick, “Twenty Years of Berkeley Unix,” 32.
34 Libes and Ressler, Life with UNIX, 16–17.
35 A recent court case between the Utah-based SCO—the current owner

of the legal rights to the original UNIX source code—and IBM raised yet
again the question of how much of the original UNIX source code exists in
the BSD distribution. SCO alleges that IBM (and Linus Torvalds) inserted
SCO-owned UNIX source code into the Linux kernel. However, the incred-
ibly circuitous route of the “original” source code makes these claims hard
to ferret out: it was developed at Bell Labs, licensed to multiple universi-
ties, used as a basis for BSD, sold to an earlier version of the company SCO
(then known as the Santa Cruz Operation), which created a version called
Xenix in cooperation with Microsoft. See the diagram by Eric Lévénez at
http://www.levenez.com/unix/. For more detail on this case, see www
.groklaw.com.

36 See Vinton G. Cerf and Robert Kahn, “A Protocol for Packet Net-
work Interconnection.” For the history, see Abbate, Inventing the Internet;
Norberg and O’Neill, A History of the Information Techniques Processing Of-
fice. Also see chapters 1 and 5 herein for more detail on the role of these
protocols and the RFC process.

37 Waldrop, The Dream Machine, chaps. 5 and 6.
38 The exception being a not unimportant tool called Unix to Unix Copy

Protocol, or uucp, which was widely used to transmit data by phone and
formed the bases for the creation of the Usenet. See Hauben and Hauben,
Netizens.

notes to chapter 4

328

39 Salus, A Quarter Century of UNIX, 161.
40 TCP/IP Digest 1.6 (11 November 1981) contains Joy’s explanation of

Berkeley’s intentions (Message-ID: anews.aucbvax.5236).
41 See Andrew Leonard, “BSD Unix: Power to the People, from the Code,”

Salon, 16 May 2000, http://archive.salon.com/tech/fsp/2000/05/16/
chapter_2_part_one/.

42 Norberg and O’Neill, A History of the Information Techniques Process-
ing Office, 184–85. They cite Comer, Internetworking with TCP/IP, 6 for the
figure.

5. Conceiving Open Systems

1 Quoted in Libes and Ressler, Life with UNIX, 67, and also in Critchley
and Batty, Open Systems, 17. I first heard it in an interview with Sean Doyle
in 1998.

2 Moral in this usage signals the “moral and social order” I explored
through the concept of social imaginaries in chapter 1. Or, in the Scottish
Enlightenment sense of Adam Smith, it points to the right organization and
relations of exchange among humans.

3 There is, of course, a relatively robust discourse of open systems in
biology, sociology, systems theory, and cybernetics; however, that mean-
ing of open systems is more or less completely distinct from what openness
and open systems came to mean in the computer industry in the period
book-ended by the arrivals of the personal computer and the explosion of
the Internet (ca. 1980–93). One relevant overlap between these two mean-
ings can be found in the work of Carl Hewitt at the MIT Media Lab and in
the interest in “agorics” taken by K. Eric Drexler, Bernardo Huberman, and
Mark S. Miller. See Huberman, The Ecology of Computation.

4 Keves, “Open Systems Formal Evaluation Process,” 87.
5 General Motors stirred strong interest in open systems by creating,

in 1985, its Manufacturing Automation Protocol (MAP), which was built
on UNIX. At the time, General Motors was the second-largest purchaser
of computer equipment after the government. The Department of Defense
and the U.S. Air Force also adopted and required POSIX-compliant UNIX
systems early on.

6 Paul Fusco, “The Gospel According to Joy,” New York Times, 27 March
1988, Sunday Magazine, 28.

7 “Dinosaur” entry, The Jargon File, http://catb.org/jargon/html/D/
dinosaur.html.

8 Crichtley and Batty, Open Systems, 10.

notes to chapter 5

329

9 An excellent counterpoint here is Paul Edwards’s The Closed World,
which clearly demonstrates the appeal of a thoroughly and hierarchically
controlled system such as the Semi-Automated Ground Environment (SAGE)
of the Department of Defense against the emergence of more “green world”
models of openness.

10 Crichtley and Batty, Open Systems, 13.
11 McKenna, Who’s Afraid of Big Blue? 178, emphasis added. McKenna

goes on to suggest that computer companies can differentiate themselves
by adding services, better interfaces, or higher reliability—ironically simi-
lar to arguments that the Open Source Initiative would make ten years
later.

12 Richard Stallman, echoing the image of medieval manacled
wretches, characterized the blind spot thus: “Unix does not give the user
any more legal freedom than Windows does. What they mean by ‘open
systems’ is that you can mix and match components, so you can decide
to have, say, a Sun chain on your right leg and some other company’s
chain on your left leg, and maybe some third company’s chain on your
right arm, and this is supposed to be better than having to choose to have
Sun chains on all your limbs, or Microsoft chains on all your limbs. You
know, I don’t care whose chains are on each limb. What I want is not to
be chained by anyone” (“Richard Stallman: High School Misfit, Symbol of
Free Software, MacArthur-certified Genius,” interview by Michael Gross,
Cambridge, Mass., 1999, 5, http://www.mgross.com/MoreThgsChng/in-
terviews/stallman1.html).

13 A similar story can be told about the emergence, in the late 1960s
and early 1970s, of manufacturers of “plug-compatible” devices, peripher-
als that plugged into IBM machines (see Takahashi, “The Rise and Fall of
the Plug Compatible Manufacturers”). Similarly, in the 1990s the story of
browser compatibility and the World Wide Web Consortium (W3C) stan-
dards is another recapitulation.

14 McKenna, Who’s Afraid of Big Blue? 178.
15 Pamela Gray, Open Systems.
16 Eric Raymond, “Origins and History of Unix, 1969–1995,” The Art

of UNIX Programming, http://www.faqs.org/docs/artu/ch02s01.html
#id2880014.

17 Libes and Ressler, Life with UNIX, 22. Also noted in Tanenbaum,
“The UNIX Marketplace in 1987,” 419.

18 Libes and Ressler, Life with UNIX, 67.
19 A case might be made that a third definition, the ANSI standard

for the C programming language, also covered similar ground, which of
course it would have had to in order to allow applications written on one

notes to chapter 5

330

operating system to be compiled and run on another (see Gray, Open Sys-
tems, 55–58; Libes and Ressler, Life with UNIX, 70–75).

20 “AT&T Deal with Sun Seen,” New York Times, 19 October 1987, D8.
21 Thomas C. Hayesdallas, “AT&T’s Unix Is a Hit at Last, and Other

Companies Are Wary,” New York Times, 24 February 1988, D8.
22 “Unisys Obtains Pacts for Unix Capabilities,” New York Times, 10

March 1988, D4.
23 Andrew Pollack, “Computer Gangs Stake Out Turf,” New York Times,

13 December 1988, D1. See also Evelyn Richards, “Computer Firms Get a
Taste of ‘Gang Warfare,’ ” Washington Post, 11 December 1988, K1; Brit
Hume, “IBM, Once the Bully on the Block, Faces a Tough New PC Gang,”
Washington Post, 3 October 1988, E24.

24 “What Is Unix?” The Unix System, http://www.unix.org/what_is_
unix/history_timeline.html.

25 “About the Open Group,” The Open Group, http://www.opengroup
.org/overview/vision-mission.htm.

26 “What Is Unix?” The Unix System, http://www.unix.org/what_is_
unix/history_timeline.html.

27 Larry McVoy was an early voice, within Sun, arguing for solving
the open-systems problem by turning to Free Software. Larry McVoy, “The
Sourceware Operating System Proposal,” 9 November 1993, http://www
.bitmover.com/lm/papers/srcos.html.

28 The distinction between a protocol, an implementation and a stan-
dard is important: Protocols are descriptions of the precise terms by which
two computers can communicate (i.e., a dictionary and a handbook for com-
municating). An implementation is the creation of software that uses a proto-
col (i.e., actually does the communicating; thus two implementations using
the same protocol should be able to share data. A standard defines which
protocol should be used by which computers, for what purposes. It may or
may not define the protocol, but will set limits on changes to that protocol.

29 The advantages of such an unplanned and unpredictable network
have come to be identified in hindsight as a design principle. See Gillespie,
“Engineering a Principle” for an excellent analysis of the history of “end to
end” or “stupid” networks.

30 William Broad, “Global Network Split as Safeguard,” New York Times,
5 October 1983, A13.

31 See the incomparable BBS: The Documentary, DVD, directed by Jason
Scott (Boston: Bovine Ignition Systems, 2005), http://www.bbsdocumentary
.com/.

32 Grier and Campbell, “A Social History of Bitnet and Listserv 1985–
1991.”

notes to chapter 5

331

33 On Usenet, see Hauben and Hauben, Netizens. See also Pfaffenberger,
“ ‘A Standing Wave in the Web of Our Communications.’ ”

34 Schmidt and Werle, Coordinating Technology, chap. 7.
35 See, for example, Martin, Viewdata and the Information Society.
36 There is little information on the development of open systems; there

is, however, a brief note from William Stallings, author of perhaps the
most widely used textbook on networking, at “The Origins of OSI,” http://
williamstallings.com/Extras/OSI.html.

37 Brock, The Second Information Revolution is a good introductory
source for this conflict, at least in its policy outlines. The Federal Commu-
nications Commission issued two decisions (known as “Computer 1” and
“Computer 2”) that attempted to deal with this conflict by trying to define
what counted as voice communication and what as data.

38 Brock, The Second Information Revolution, chap. 10.
39 Drake, “The Internet Religious War.”
40 Malamud, Exploring the Internet; see also Michael M. J. Fischer,

“Worlding Cyberspace.”
41 The usable past of Giordano Bruno is invoked by Malamud to signal

the heretical nature of his own commitment to openly publishing standards
that ISO was opposed to releasing. Bruno’s fate at the hands of the Ro-
man Inquisition hinged in some part on his acceptance of the Copernican
cosmology, so he has been, like Galileo, a natural figure for revolutionary
claims during the 1990s.

42 Abbate, Inventing the Internet; Salus, Casting the Net; Galloway, Proto-
col; and Brock, The Second Information Revolution. For practitioner histories,
see Kahn et al., “The Evolution of the Internet as a Global Information Sys-
tem”; Clark, “The Design Philosophy of the DARPA Internet Protocols.”

43 Kahn et al., “The Evolution of the Internet as a Global Information
System,” 134–140; Abbate, Inventing the Internet, 114–36.

44 Kahn and Cerf, “A Protocol for Packet Network Intercommunica-
tion,” 637.

45 Clark, “The Design Philosophy of the DARPA Internet Protocols,”
54–55.

46 RFCs are archived in many places, but the official site is RFC Editor,
http://www.rfc-editor.org/.

47 RFC Editor, RFC 2555, 6.
48 Ibid., 11.
49 This can be clearly seen, for instance, by comparing the various edi-

tions of the main computer-networking textbooks: cf. Tanenbaum, Computer
Networks, 1st ed. (1981), 2d ed. (1988), 3d ed. (1996), and 4th ed. (2003);
Stallings, Data and Computer Communications, 1st ed. (1985), 2d ed. (1991),

notes to chapter 5

332

3d ed. (1994), 4th ed. (1997), and 5th ed. (2004); and Comer, Internetwork-
ing with TCP/IP (four editions between 1991 and 1999).

50 Sunshine, Computer Network Architectures and Protocols, 5.
51 The structure of the IETF, the Internet Architecture Board, and

the ISOC is detailed in Comer, Internetworking with TCP/IP, 8–13; also in
Schmidt and Werle, Coordinating Technology, 53–58.

52 Message-ID: 673c43e160cia758@sluvca.slu.edu. See also Berners-
Lee, Weaving the Web.

6. Writing Copyright Licenses

1 The legal literature on Free Software expands constantly and quickly,
and it addresses a variety of different legal issues. Two excellent starting
points are Vetter, “The Collaborative Integrity of Open-Source Software”
and “ ‘Infectious’ Open Source Software.”

2 Coleman, “The Social Construction of Freedom.”
3 “The GNU General Public Licence, Version 2.0,” http://www.gnu.org

/licenses/old-licenses/gpl-2.0.html.
4 All existing accounts of the hacker ethic come from two sources: from

Stallman himself and from the colorful and compelling chapter about Stall-
man in Steven Levy’s Hackers. Both acknowledge a prehistory to the ethic.
Levy draws it back in time to the MIT Tech Model Railroad Club of the
1950s, while Stallman is more likely to describe it as reaching back to
the scientific revolution or earlier. The stories of early hackerdom at MIT
are avowedly Edenic, and in them hackers live in a world of uncontested
freedom and collegial competition—something like a writer’s commune
without the alcohol or the brawling. There are stories about a printer
whose software needed fixing but was only available under a nondisclo-
sure agreement; about a requirement to use passwords (Stallman refused,
chose <return> as his password, and hacked the system to encourage
others to do the same); about a programming war between different LISP
machines; and about the replacement of the Incompatible Time-Sharing
System with DEC’s TOPS-20 (“Twenex”) operating system. These stories
are oft-told usable pasts, but they are not representative. Commercial con-
straints have always been part of academic life in computer science and
engineering: hardware and software were of necessity purchased from
commercial manufacturers and often controlled by them, even if they of-
fered “academic” or “educational” licenses.

5 Delanda, “Open Source.”
6 Dewey, Liberalism and Social Action.

notes to chapter 6

333

7 Copyright Act of 1976, Pub. L. No. 94–553, 90 Stat. 2541, enacted
19 October 1976; and Copyright Amendments, Pub. L. No. 96–517, 94 Stat.
3015, 3028 (amending §101 and §117, title 17, United States Code, regard-
ing computer programs), enacted 12 December 1980. All amendments since
1976 are listed at http://www.copyright.gov/title17/92preface.html.

8 The history of the copyright and software is discussed in Litman,
Digital Copyright; Cohen et al., Copyright in a Global Information Economy;
and Merges, Menell, and Lemley, Intellectual Property in the New Technologi-
cal Age.

9 See Wayner, Free for All; Moody, Rebel Code; and Williams, Free as in
Freedom. Although this story could be told simply by interviewing Stall-
man and James Gosling, both of whom are still alive and active in the
software world, I have chosen to tell it through a detailed analysis of the
Usenet and Arpanet archives of the controversy. The trade-off is between a
kind of incomplete, fly-on-the-wall access to a moment in history and the
likely revisionist retellings of those who lived through it. All of the mes-
sages referenced here are cited by their “Message-ID,” which should allow
anyone interested to access the original messages through Google Groups
(http://groups.google.com).

10 Eugene Ciccarelli, “An Introduction to the EMACS Editor,” MIT Ar-
tificial Intelligence Laboratory, AI Lab Memo no. 447, 1978, 2.

11 Richard Stallman, “EMACS: The Extensible, Customizable Self-
documenting Display Editor,” MIT Artificial Intelligence Laboratory, AI
Lab Memo no. 519a, 26 March 1981, 19. Also published as Richard M.
Stallman, “EMACS: The Extensible, Customizable Self-documenting Dis-
play Editor,” Proceedings of the ACM SIGPLAN SIGOA Symposium on Text
Manipulation, 8–10 June (ACM, 1981), 147–56.

12 Richard Stallman, “EMACS: The Extensible, Customizable Self-
documenting Display Editor,” MIT Artificial Intelligence Laboratory, AI
Lab Memo no. 519a, 26 March 1981, 24.

13 Richard M. Stallman, “EMACS Manual for ITS Users,” MIT Artificial
Intelligence Laboratory, AI Lab Memo no. 554, 22 October 1981, 163.

14 Back in January of 1983, Steve Zimmerman had announced that
the company he worked for, CCA, had created a commercial version of
EMACS called CCA EMACS (Message-ID: 385@yetti.uucp). Zimmerman
had not written this version entirely, but had taken a version written by
Warren Montgomery at Bell Labs (written for UNIX on PDP-11s) and cre-
ated the version that was being used by programmers at CCA. Zimmerman
had apparently distributed it by ftp at first, but when CCA determined
that it might be worth something, they decided to exploit it commercially,
rather than letting Zimmerman distribute it “freely.” By Zimmerman’s own

notes to chapter 6

334

account, this whole procedure required ensuring that there was nothing
left of the original code by Warren Montgomery that Bell Labs owned
(Message-ID: 730@masscomp.uucp).

15 Message-ID for Gosling: bnews.sri-arpa.865.
16 The thread starting at Message-ID: 969@sdcsvax.uucp contains one

example of a discussion over the difference between public-domain and
commercial software.

17 In particular, a thread discussing this in detail starts at Message-
ID: 172@encore.uucp and includes Message-ID: 137@osu-eddie.UUCP,
Message-ID: 1127@godot.uucp, Message-ID: 148@osu-eddie.uucp.

18 Message-ID: bnews.sri-arpa.988.
19 Message-ID: 771@mit-eddie.uucp, announced on net.unix-wizards

and net.usoft.
20 Message-ID: 771@mit-eddie.uucp.
21 Various other people seem to have conceived of a similar scheme

around the same time (if the Usenet archives are any guide), including Guido
Van Rossum (who would later become famous for the creation of the Python
scripting language). The following is from Message-ID: 5568@mcvax.uucp:

/* This software is copyright (c) Mathematical Centre, Amsterdam,
* 1983.
* Permission is granted to use and copy this software, but not for
* profit,
* and provided that these same conditions are imposed on any person
* receiving or using the software.
*/

22 For example, Message-ID: 6818@brl-tgr.arpa.
23 Stallman, “The GNU Manifesto.” Available at GNU’s Not Unix!,

http://www.gnu.org/gnu/manifesto.html.
24 The main file of the controversy was called display.c. A version that

was modified by Chris Torek appears in net.sources, Message-ID: 424@umcp-
cs.uucp. A separate example of a piece of code written by Gosling bears a
note that claims he had declared it public domain, but did not “include the
infamous Stallman anti-copyright clause” (Message-ID: 78@tove.uucp).

25 Message-ID: 7773@ucbvax.arpa.
26 Message-ID: 11400007@inmet.uucp.
27 Message-ID: 717@masscomp.uucp.
28 Message-ID: 4421@mit-eddie.uucp.
29 Message-ID: 4486@mit-eddie.uucp. Stallman also recounts this ver-

sion of events in “RMS Lecture at KTH (Sweden),” 30 October 1986, http://
www.gnu.org/philosophy/stallman-kth.html.

notes to chapter 6

335

30 Message-ID: 2334@sun.uucp.
31 Message-ID: 732@masscomp.uucp.
32 Message-ID: 103@unipress.uucp.
33 With the benefit of hindsight, the position that software could be

in the public domain also seems legally uncertain, given that the 1976
changes to USC§17 abolished the requirement to register and, by the same
token, to render uncertain the status of code contributed to Gosling and
incorporated into GOSMACS.

34 Message-ID: 18@megatest. Note here the use of “once proud hacker
ethic,” which seems to confirm the perpetual feeling that the ethic has been
compromised.

35 Message-ID: 287@mit-athena.uucp.
36 Message-ID: 4559@mit-eddie.uucp.
37 Message-ID: 4605@mit-eddie.uucp.
38 Message-ID: 104@unipress.uucp.
39 Joaquim Martillo, Message-ID: 287@mit-athena.uucpp: “Trying to

forbid RMS from using discarded code so that he must spend time to rein-
vent the wheel supports his contention that ‘software hoarders’ are slowing
down progress in computer science.”

40 Diamond V. Diehr, 450 U.S. 175 (1981), the Supreme Court deci-
sion, forced the patent office to grant patents on software. Interestingly,
software patents had been granted much earlier, but went either uncon-
tested or unenforced. An excellent example is patent 3,568,156, held by
Ken Thompson, on regular expression pattern matching, granted in 1971.

41 Calvin Mooers, in his 1975 article “Computer Software and Copy-
right,” suggests that the IBM unbundling decision opened the doors to
thinking about copyright protection.

42 Message-ID: 933@sdcrdcf.uucp.
43 Gosling’s EMACS 264 (Stallman copied EMACS 84) is registered

with the Library of Congress, as is GNU EMACS 15.34. Gosling’s EMACS
Library of Congress registration number is TX-3–407–458, registered in
1992. Stallman’s registration number is TX-1–575–302, registered in May
1985. The listed dates are uncertain, however, since there are periodic re-
registrations and updates.

44 This is particularly confusing in the case of “dbx.” Message-ID:
4437@mit-eddie.uucp, Message-ID: 6238@shasta.arpa, and Message-ID:
730@masscomp.uucp.

45 Message-ID: 4489@mit-eddie.uucp.
46 A standard practice well into the 1980s, and even later, was the cre-

ation of so-called clean-room versions of software, in which new program-
mers and designers who had not seen the offending code were hired to

notes to chapter 6

336

re-implement it in order to avoid the appearance of trade-secret violation.
Copyright law is a strict liability law, meaning that ignorance does not
absolve the infringer, so the practice of “clean-room engineering” seems
not to have been as successful in the case of copyright, as the meaning of
infringement remains murky.

47 Message-ID: 730@masscomp.uucp. AT&T was less concerned about
copyright infringement than they were about the status of their trade se-
crets. Zimmerman quotes a statement (from Message-ID: 108@emacs.uucp)
that he claims indicates this: “Beginning with CCA EMACS version 162.36z,
CCA EMACS no longer contained any of the code from Mr. Montgomery’s
EMACS, or any methods or concepts which would be known only by pro-
grammers familiar with BTL [Bell Labs] EMACS of any version.” The state-
ment did not mention copyright, but implied that CCA EMACS did not
contain any AT&T trade secrets, thus preserving their software’s trade-secret
status. The fact that EMACS was a conceptual design—a particular kind of
interface, a LISP interpreter, and extensibility—that was very widely imi-
tated had no apparent bearing on the legal status of these secrets.

48 CONTU Final Report, http://digital-law-online.info/CONTU/contu1
.html (accessed 8 December 2006).

49 The cases that determine the meaning of the 1976 and 1980 amend-
ments begin around 1986: Whelan Associates, Inc. v. Jaslow Dental Labora-
tory, Inc., et al., U.S. Third Circuit Court of Appeals, 4 August 1986, 797
F.2d 1222, 230 USPQ 481, affirming that “structure (or sequence or orga-
nization)” of software is copyrightable, not only the literal software code;
Computer Associates International, Inc. v. Altai, Inc., U.S. Second Circuit Court
of Appeals, 22 June 1992, 982 F.2d 693, 23 USPQ 2d 1241, arguing that
the structure test in Whelan was not sufficient to determine infringement
and thus proposing a three-part “abstraction-filiation-comparison” test;
Apple Computer, Inc. v. Microsoft Corp, U.S. Ninth Circuit Court of Appeals,
1994, 35 F.3d 1435, finding that the “desktop metaphor” used in Macin-
tosh and Windows was not identical and thus did not constitute infringe-
ment; Lotus Development Corporation v. Borland International, Inc. (94–2003),
1996, 513 U.S. 233, finding that the “look and feel” of a menu interface
was not copyrightable.

50 The relationship between the definition of source and target befud-
dles software law to this day, one of the most colorful examples being the
DeCSS case. See Coleman, “The Social Construction of Freedom,” chap. 1:
Gallery of CSS Descramblers, http://www.cs.cmu.edu/~dst/DeCSS/gal-
lery/.

51 An interesting addendum here is that the manual for EMACS was
also released at around the same time as EMACS 16 and was available

notes to chapter 6

337

as a TeX file. Stallman also attempted to deal with the paper document in
the same fashion (see Message-ID: 4734@mit-eddie. uucp, 19 July 1985),
and this would much later become a different and trickier issue that would
result in the GNU Free Documentation License.

52 Message-ID: 659@umcp-cs.uucp.
53 Message-ID: 8605202356.aa12789@ucbvax.berkeley.edu.
54 See Coleman, “The Social Construction of Freedom,” chap. 6, on the

Debian New Maintainer Process, for an example of how induction into a Free
Software project stresses the legal as much as the technical, if not more.

55 For example, Message-ID: 5745@ucbvax.arpa.
56 See Message-ID: 8803031948.aa01085@venus.berkeley.edu.

7. Coordinating Collaborations

1 Research on coordination in Free Software forms the central core of
recent academic work. Two of the most widely read pieces, Yochai Ben-
kler’s “Coase’s Penguin” and Steven Weber’s The Success of Open Source,
are directed at classic research questions about collective action. Rishab
Ghosh’s “Cooking Pot Markets” and Eric Raymond’s The Cathedral and the
Bazaar set many of the terms of debate. Josh Lerner’s and Jean Tirole’s
“Some Simple Economics of Open Source” was an early contribution. Other
important works on the subject are Feller et al., Perspectives on Free and
Open Source Software; Tuomi, Networks of Innovation; Von Hippel, Democ-
ratizing Innovation.

2 On the distinction between adaptability and adaptation, see Fed-
erico Iannacci, “The Linux Managing Model,” http://opensource.mit.edu/
papers/iannacci2.pdf. Matt Ratto characterizes the activity of Linux-kernel
developers as a “culture of re-working” and a “design for re-design,” and
captures the exquisite details of such a practice both in coding and in the
discussion between developers, an activity he dubs the “pressure of open-
ness” that “results as a contradiction between the need to maintain produc-
tive collaborative activity and the simultaneous need to remain open to
new development directions” (“The Pressure of Openness,” 112–38).

3 Linux is often called an operating system, which Stallman objects to
on the theory that a kernel is only one part of an operating system. Stallman
suggests that it be called GNU/Linux to reflect the use of GNU operating-
system tools in combination with the Linux kernel. This not-so-subtle ploy
to take credit for Linux reveals the complexity of the distinctions. The ker-
nel is at the heart of hundreds of different “distributions”—such as Debian,
Red Hat, SuSe, and Ubuntu Linux—all of which also use GNU tools, but

notes to chapter 7

338

which are often collections of software larger than just an operating sys-
tem. Everyone involved seems to have an intuitive sense of what an oper-
ating system is (thanks to the pedagogical success of UNIX), but few can
draw any firm lines around the object itself.

4 Eric Raymond directed attention primarily to Linux in The Cathedral
and the Bazaar. Many other projects preceded Torvalds’s kernel, however,
including the tools that form the core of both UNIX and the Internet: Paul
Vixie’s implementation of the Domain Name System (DNS) known as BIND;
Eric Allman’s sendmail for routing e-mail; the scripting languages perl
(created by Larry Wall), python (Guido von Rossum), and tcl/tk (John
Ousterhout); the X Windows research project at MIT; and the derivatives
of the original BSD UNIX, FreeBSD and OpenBSD. On the development
model of FreeBSD, see Jorgensen, “Putting It All in the Trunk” and “Incre-
mental and Decentralized Integration in FreeBSD.” The story of the genesis
of Linux is very nicely told in Moody, Rebel Code, and Williams, Free as in
Freedom; there are also a number of papers—available through Free/Open-
source Research Community, http://freesoftware.mit.edu/—that analyze
the development dynamics of the Linux kernel. See especially Ratto, “Em-
bedded Technical Expression” and “The Pressure of Openness.” I have con-
ducted much of my analysis of Linux by reading the Linux Kernel Mailing
List archives, http://lkml.org. There are also annotated summaries of the
Linux Kernel Mailing List discussions at http://kerneltraffic.org.

5 Howard Rheingold, The Virtual Community. On the prehistory of this
period and the cultural location of some key aspects, see Turner, From
Counterculture to Cyberculture.

6 Julian Dibbell’s “A Rape in Cyberspace” and Sherry Turkle’s Life on
the Screen are two classic examples of the detailed forms of life and collab-
orative ethical creation that preoccupied denizens of these worlds.

7 The yearly influx of students to the Usenet and Arpanet in September
earned that month the title “the longest month,” due to the need to train
new users in use and etiquette on the newsgroups. Later in the 1990s, when
AOL allowed subscribers access to the Usenet hierarchy, it became known
as “eternal September.” See “September that Never Ended,” Jargon File,
http://catb.org/~esr/jargon/html/S/September-that-never-ended.html.

8 Message-ID: 1991aug25.205708.9541@klaava.helsinki.fi.
9 Message-ID: 12595@star.cs.vu.nl.
10 Indeed, initially, Torvalds’s terms of distribution for Linux were

more restrictive than the GPL, including limitations on distributing it for a
fee or for handling costs. Torvalds eventually loosened the restrictions and
switched to the GPL in February 1992. Torvalds’s release notes for Linux
0.12 say, “The Linux copyright will change: I’ve had a couple of requests

notes to chapter 7

339

to make it compatible with the GNU copyleft, removing the ‘you may not
distribute it for money’ condition. I agree. I propose that the copyright be
changed so that it conforms to GNU—pending approval of the persons
who have helped write code. I assume this is going to be no problem for
anybody: If you have grievances (‘I wrote that code assuming the copy-
right would stay the same’) mail me. Otherwise The GNU copyleft takes
effect as of the first of February. If you do not know the gist of the GNU
copyright—read it” (http://www.kernel.org/pub/linux/kernel/Historic/
old-versions/RELNOTES-0.12).

11 Message-ID: 12667@star.cs.vu.nl.
12 Message-ID: 12595@star.cs.vu.nl. Key parts of the controversy were

reprinted in Dibona et al. Open Sources.
13 Steven Weber, The Success of Open Source, 164.
14 Quoted in Zack Brown, “Kernel Traffic #146 for 17Dec2001,” Ker-

nel Traffic, http://www.kerneltraffic.org/kernel-traffic/kt20011217_146
.html; also quoted in Federico Iannacci, “The Linux Managing Model,”
http://opensource.mit.edu/papers/iannacci2.pdf.

15 Message-ID: 673c43e160C1a758@sluvca.slu.edu. See also, Berners-
Lee, Weaving the Web.

16 The original Apache Group included Brian Behlendorf, Roy T. Field-
ing, Rob Harthill, David Robinson, Cliff Skolnick, Randy Terbush, Robert
S. Thau, Andrew Wilson, Eric Hagberg, Frank Peters, and Nicolas Pioch.
The mailing list new-httpd eventually became the Apache developers list.
The archives are available at http://mail-archives.apache.org/mod_mbox/
httpd-dev/ and cited hereafter as “Apache developer mailing list,” followed
by sender, subject, date, and time.

17 For another version of the story, see Moody, Rebel Code, 127–28. The
official story honors the Apache Indian tribes for “superior skills in warfare
strategy and inexhaustible endurance.” Evidence of the concern of the origi-
nal members over the use of the name is clearly visible in the archives of
the Apache project. See esp. Apache developer mailing list, Robert S. Thau,
Subject: The political correctness question . . . , 22 April 1995, 21:06 EDT.

18 Mockus, Fielding, and Herbsleb, “Two Case Studies of Open Source
Software Development,” 3.

19 Apache developer mailing list, Andrew Wilson, Subject: Re: httpd
patch B5 updated, 14 March 1995, 21:49 GMT.

20 Apache developer mailing list, Rob Harthill, Subject: Re: httpd patch
B5 updated, 14 March 1995, 15:10 MST.

21 Apache developer mailing list, Cliff Skolnick, Subject: Process (please
read), 15 March 1995, 3:11 PST; and Subject: Patch file format, 15 March
1995, 3:40 PST.

notes to chapter 7

340

22 Apache developer mailing list, Rob Harthill, Subject: patch list vote,
15 March 1995, 13:21:24 MST.

23 Apache developer mailing list, Rob Harthill, Subject: apache-0.2 on
hyperreal, 18 March 1995, 18:46 MST.

24 Apache developer mailing list, Cliff Skolnick, Subject: Re: patch list
vote, 21 March 1995, 2:47 PST.

25 Apache developer mailing list, Paul Richards, Subject: Re: vote count-
ing, 21 March 1995, 22:24 GMT.

26 Roy T. Fielding, “Shared Leadership in the Apache Project.”
27 Apache developer mailing list, Robert S. Thau, Subject: Re: 0.7.2b,

7 June 1995, 17:27 EDT.
28 Apache developer mailing list, Robert S. Thau, Subject: My Garage

Project, 12 June 1995, 21:14 GMT.
29 Apache developer mailing list, Rob Harthill, Subject: Re: Shamb-

hala, 30 June 1995, 9:44 MDT.
30 Apache developer mailing list, Rob Harthill, Subject: Re: Shamb-

hala, 30 June 1995, 14:50 MDT.
31 Apache developer mailing list, Rob Harthill, Subject: Re: Shamb-

hala, 30 June 1995, 16:48 GMT.
32 Gabriella Coleman captures this nicely in her discussion of the ten-

sion between the individual virtuosity of the hacker and the corporate
populism of groups like Apache or, in her example, the Debian distribution
of Linux. See Coleman, The Social Construction of Freedom.

33 Apache developer mailing list, Robert S. Thau, Subject: Re: Shamb-
hala, 1 July 1995, 14:42 EDT.

34 A slightly different explanation of the role of modularity is discussed
in Steven Weber, The Success of Open Source, 173–75.

35 Tichy, “RCS.”
36 See Steven Weber, The Success of Open Source, 117–19; Moody, Rebel

Code, 172–78. See also Shaikh and Cornford, “Version Management Tools.”
37 Linus Torvalds, “Re: [PATCH] Remove Bitkeeper Documentation

from Linux Tree,” 20 April 2002, http://www.uwsg.indiana.edu/hyper-
mail/linux/kernel/0204.2/1018.html. Quoted in Shaikh and Cornford,
“Version Management Tools.”

38 Andrew Orlowski, “ ‘Cool it, Linus’—Bruce Perens,” Register, 15
April 2005, http://www.theregister.co.uk/2005/04/15/perens_on_torvalds/
page2.html.

39 Similar debates have regularly appeared around the use of non-free
compilers, non-free debuggers, non-free development environments, and
so forth. There are, however, a large number of people who write and pro-
mote Free Software that runs on proprietary operating systems like Macin-
tosh and Windows, as well as a distinction between tools and formats. So,

notes to chapter 7

341

for instance, using Adobe Photoshop to create icons is fine so long as they
are in standard open formats like PNG or JPG, and not proprietary forms
such as GIF or photoshop.

40 Quoted in Jeremy Andrews, “Interview: Larry McVoy,” Kernel Trap,
28 May 2002, http://Kerneltrap.org/node/222.

41 Steven Weber, The Success of Open Source, 132.
42 Raymond, The Cathedral and the Bazaar.
43 Gabriella Coleman, in “The Social Construction of Freedom,” pro-

vides an excellent example of a programmer’s frustration with font-lock in
EMACS, something that falls in between a bug and a feature. The program-
mer’s frustration is directed at the stupidity of the design (and implied de-
signers), but his solution is not a fix, but a work-around—and it illustrates
how debugging does not always imply collaboration.

44 Dan Wallach, interview, 3 October 2003.
45 Mitchell Waldrop’s The Dream Machine details the family history well.

8. “If We Succeed, We Will Disappear”

1 In January 2005, when I first wrote this analysis, this was true. By
April 2006, the Hewlett Foundation had convened the Open Educational
Resources “movement” as something that would transform the production
and circulation of textbooks like those created by Connexions. Indeed, in
Rich Baraniuk’s report for Hewlett, the first paragraph reads: “A grassroots
movement is on the verge of sweeping through the academic world. The
open education movement is based on a set of intuitions that are shared by a
remarkably wide range of academics: that knowledge should be free and
open to use and re-use; that collaboration should be easier, not harder;
that people should receive credit and kudos for contributing to education
and research; and that concepts and ideas are linked in unusual and sur-
prising ways and not the simple linear forms that textbooks present. Open
education promises to fundamentally change the way authors, instruc-
tors, and students interact worldwide” (Baraniuk and King, “Connexions”).
(In a nice confirmation of just how embedded participation can become
in anthropology, Baraniuk cribbed the second sentence from something I
had written two years earlier as part of a description of what I thought
Connexions hoped to achieve.) The “movement” as such still does not quite
exist, but the momentum for it is clearly part of the actions that Hewlett
hopes to achieve.

2 See Chris Beam, “Fathom.com Shuts Down as Columbia Withdraws,”
Columbia Spectator, 27 January 2003, http://www.columbiaspectator.com/.
Also see David Noble’s widely read critique, “Digital Diploma Mills.”

notes to chapter 8

342

3 “Provost Announces Formation of Council on Educational Technol-
ogy,” MIT Tech Talk, 29 September 1999, http://web.mit.edu/newsoffice/
1999/council-0929.html.

4 The software consists of a collection of different Open Source Soft-
ware cobbled together to provide the basic platform (the Zope and Plone
content-management frameworks, the PostGresQL database, the python
programming language, and the cvs version-control software).

5 The most significant exception has been the issue of tools for author-
ing content in XML. For most of the life of the Connexions project, the XML
mark-up language has been well-defined and clear, but there has been no
way to write a module in XML, short of directly writing the text and the tags
in a text editor. For all but a very small number of possible users, this feels
too much like programming, and they experience it as too frustrating to be
worth it. The solution (albeit temporary) was to encourage users to make
use of a proprietary XML editor (like a word processor, but capable of cre-
ating XML content). Indeed, the Connexions project’s devotion to openness
was tested by one of the most important decisions its participants made: to
pursue the creation of an Open Source XML text editor in order to provide
access to completely open tools for creating completely open content.

6 Boyle, “Mertonianism Unbound,” 14.
7 The movement is the component that remains unmodulated: there

is no “free textbook” movement associated with Connexions, even though
many of the same arguments that lead to a split between Free Software
and Open Source occur here: the question of whether the term free is con-
fusing, for example, or the role of for-profit publishers or textbook compa-
nies. In the end, most (though not all) of the Connexions staff and many of
its users are content to treat it as a useful tool for composing novel kinds
of digital educational material—not as a movement for the liberation of
educational content.

8 Boyle, “Conservatives and Intellectual Property.”
9 Lessig’s output has been prodigious. His books include Code and Other

Laws of Cyber Space, The Future of Ideas, Free Culture, and Code: Version 2.0.
He has also written a large number of articles and is an active blogger
(http://www.lessig.org/blog/).

10 There were few such projects under way, though there were many
in the planning stages. Within a year, the Public Library of Science had
launched itself, spearheaded by Harold Varmus, the former director of the
National Institutes of Health. At the time, however, the only other large
scholarly project was the MIT Open Course Ware project, which, although
it had already agreed to use Creative Commons licenses, had demanded a
peculiar one-off license.

notes to chapter 8

343

11 The fact that I organized a workshop to which I invited “informants”
and to which I subsequently refer as research might strike some, both in
anthropology and outside it, as wrong. But it is precisely the kind of oc-
casion I would argue has become central to the problematics of method
in cultural anthropology today. On this subject, see Holmes and Marcus,
“Cultures of Expertise and the Management of Globalization.” Such stra-
tegic and seemingly ad hoc participation does not exclude one from at-
tempting to later disentangle oneself from such participation, in order to
comment on the value and significance, and especially to offer critique.
Such is the attempt to achieve objectivity in social science, an objectivity
that goes beyond the basic notions of bias and observer-effect so common
in the social sciences. “Objectivity” in a broader social sense includes the
observation of the conceptual linkages that both precede such a workshop
(constituted the need for it to happen) and follow on it, independent of any
particular meeting. The complexity of mobilizing objectivity in discussions
of the value and significance of social or economic phenomena was well
articulated a century ago by Max Weber, and problems of method in the
sense raised by him seem to me to be no less fraught today. See Max Weber,
“Objectivity in the Social Sciences.”

12 Suntrust v. Houghton Mifflin Co., U.S. Eleventh Circuit Court of Ap-
peals, 2001, 252 F. 3d 1165.

13 Neil Strauss, “An Uninvited Bassist Takes to the Internet,” New York
Times, 25 August 2002, sec. 2, 23.

14 Indeed, in a more self-reflective moment, Glenn once excitedly wrote
to me to explain that what he was doing was “code-switching” and that he
thought that geeks who constantly involved themselves in technology, law,
music, gaming, and so on would be prime case studies for a code-switching
study by anthropologists.

15 See Kelty, “Punt to Culture.”
16 Lessig, “The New Chicago School.”
17 Hence, Boyle’s “Second Enclosure Movement” and “copyright con-

servancy” concepts (see Boyle, “The Second Enclosure Movement”; Bollier,
Silent Theft). Perhaps the most sophisticated and compelling expression
of the institutional-economics approach to understanding Free Software
is the work of Yochai Benkler, especially “Sharing Nicely” and “Coase’s
Penguin.” See also Benkler, Wealth of Networks.

18 Steven Weber’s The Success of Open Source is exemplary.
19 Carrington and King, “Law and the Wisconsin Idea.”
20 In particular, Glenn Brown suggested Oliver Wendell Holmes as a

kind of origin point both for critical legal realism and for law and eco-
nomics, a kind of filter through which lawyers get both their Nietzsche

notes to chapter 8

344

and their liberalism (see Oliver Wendell Holmes, “The Path of the Law”).
Glenn’s opinion was that what he called “punting to culture” (by which
he meant writing minimalist laws which allow social custom to fill in the
details) descended more or less directly from the kind of legal reasoning
embodied in Holmes: “Note that [Holmes] is probably best known in legal
circles for arguing that questions of morality be removed from legal analy-
sis and left to the field of ethics. this is what makes him the godfather of
both the posners of the world, and the crits, and the strange hybrids like
lessig” (Glenn Brown, personal communication, 11 August 2003).

9. Reuse, Modification, Norms

1 Actor-network theory comes closest to dealing with such “ontologi-
cal” issues as, for example, airplanes in John Law’s Aircraft Stories, the
disease atheroscleroris in Annemarie Mol’s The Body Multiple, or in vitro
fertilization in Charis Thompson’s Making Parents. The focus here on final-
ity is closely related, but aims at revealing the temporal characteristics of
highly modifiable kinds of knowledge-objects, like textbooks or databases,
as in Geoffrey Bowker’s Memory Practices in the Sciences.

2 Merton, “The Normative Structure of Science.”
3 See Johns, The Nature of the Book; Eisenstein, The Printing Press as an

Agent of Change; McLuhan, The Gutenberg Galaxy and Understanding Me-
dia; Febvre and Martin, The Coming of the Book; Ong, Ramus, Method, and
the Decay of Dialogue; Chartier, The Cultural Uses of Print in Early Modern
France and The Order of Books; Kittler, Discourse Networks 1800/1900 and
Gramophone, Film, Typewriter.

4 There is less communication between the theorists and historians of
copyright and authorship and those of the book; the former are also rich
in analyses, such as Jaszi and Woodmansee, The Construction of Authorship;
Mark Rose, Authors and Owners; St. Amour, The Copywrights; Vaidhyana-
than, Copyrights and Copywrongs.

5 Eisenstein, The Printing Press as an Agent of Change. Eisenstein’s work
makes direct reference to McLuhan’s thesis in The Gutenberg Galaxy, and
Latour relies on these works and others in “Drawing Things Together.”

6 Johns, The Nature of the Book, 19–20.
7 On this subject, cf. Pablo Boczkowski’s study of the digitization of

newspapers, Digitizing the News.
8 Conventional here is actually quite historically proximate: the system

creates a pdf document by translating the XML document into a LaTeX
document, then into a pdf document. LaTeX has been, for some twenty
years, a standard text-formatting and typesetting language used by some

notes to chapter 9

345

sectors of the publishing industry (notably mathematics, engineering,
and computer science). Were it not for the existence of this standard from
which to bootstrap, the Connexions project would have faced a consider-
ably more difficult challenge, but much of the infrastructure of publishing
has already been partially transformed into a computer-mediated and
-controlled system whose final output is a printed book. Later in Connex-
ions’s lifetime, the group coordinated with an Internet-publishing startup
called Qoop.com to take the final step and make Connexions courses avail-
able as print-on-demand, cloth-bound textbooks, complete with ISBNs and
back-cover blurbs.

9 See Johns, The Nature of the Book; Warner, The Letters of the Republic.
10 On fixity, see Eisenstein’s The Printing Press as an Agent of Change

which cites McLuhan’s The Gutenberg Galaxy. The stability of texts is also
questioned routinely by textual scholars, especially those who work with
manuscripts and complicated varoria (for an excellent introduction, see
Bornstein and Williams, Palimpsest). Michel Foucault’s “What Is an Au-
thor?” addresses a related but orthogonal problematic and is unconcerned
with the relatively sober facts of a changing medium.

11 A salient and recent point of comparison can be found in the form of
Lawrence Lessig’s “second edition” of his book Code, which is titled Code: Ver-
sion 2.0 (version is used in the title, but edition is used in the text). The first book
was published in 1999 (“ancient history in Internet time”), and Lessig con-
vinced the publisher to make it available as a wiki, a collaborative Web site
which can be directly edited by anyone with access. The wiki was edited and
updated by hordes of geeks, then “closed” and reedited into a second edition
with a new preface. It is a particularly tightly controlled example of collabora-
tion; although the wiki and the book were freely available, the modification
and transformation of them did not amount to a simple free-for-all. Instead,
Lessig leveraged his own authority, his authorial voice, and the power of Basic
Books to create something that looks very much like a traditional second edi-
tion, although it was created by processes unimaginable ten years ago.

12 The most familiar comparison is Wikipedia, which was started af-
ter Connexions, but grew far more quickly and dynamically, largely due
to the ease of use of the system (a bone of some contention among the
Connexions team). Wikipedia has come under assault primarily for being
unreliable. The suspicion and fear that surround Wikipedia are similar to
those that face Connexions, but in the case of Wikipedia entries, the com-
mitment to openness is stubbornly meritocratic: any article can be edited
by anyone at anytime, and it matters not how firmly one is identified as
an expert by rank, title, degree, or experience—a twelve year old’s knowl-
edge of the Peloponnesian War is given the same access and status as an
eighty-year-old classicist’s. Articles are not owned by individuals, and

notes to chapter 9

346

all work is pseudonymous and difficult to track. The range of quality is
therefore great, and the mainstream press has focused largely on whether
Wikipedia is more or less reliable than conventional encyclopedias, not on
the process of knowledge production. See, for instance, George Johnson,
“The Nitpicking of the Masses vs. the Authority of the Experts,” New York
Times, 3 January 2006, Late Edition—Final, F2; Robert McHenry, “The
Faith-based Encyclopedia,” TCS Daily, 15 November 2004, http://www
.techcentralstation.com/111504A.html.

13 Again, a comparison with Wikipedia is apposite. Wikipedia is, mor-
ally speaking, and especially in the persona of its chief editor, Jimbo Wales,
totally devoted to merit-based equality, with users getting no special desig-
nation beyond the amount and perceived quality of the material they con-
tribute. Degrees or special positions of employment are anathema. It is a
quintessentially American, anti-intellectual-fueled, Horatio Alger–style ap-
proach in which the slate is wiped clean and contributors are given a chance
to prove themselves independent of background. Connexions, by contrast,
draws specifically from the ranks of intellectuals or academics and seeks to
replace the infrastructure of publishing. Wikipedia is interested only in cre-
ating a better encyclopedia. In this respect, it is transhumanist in character,
attributing its distinctiveness and success to the advances in technology (the
Internet, wiki, broadband connections, Google). Connexions on the other
hand is more polymathic, devoted to intervening into the already complexly
constituted organizational practice of scholarship and academia.

14 An even more technical feature concerned the issue of the order
of authorship. The designers at first decided to allow Connexions to sim-
ply display the authors in alphabetical order, a practice adopted by some
disciplines, like computer science. However, in the case of the Housman
example this resulted in what looked like a module authored principally
by me, and only secondarily by A. E. Housman. And without the ability
to explicitly designate order of authorship, many disciplines had no way
to express their conventions along these lines. As a result, the system was
redesigned to allow users to designate the order of authorship as well.

15 I refer here to Eric Raymond’s “discovery” that hackers possess un-
stated norms that govern what they do, in addition to the legal licenses
and technical practices they engage in (see Raymond, “Homesteading the
Noosphere”). For a critique and background on hacker ethics and norms,
see Coleman, “The Social Construction of Freedom.”

16 Bruno Latour’s Science in Action makes a strong case for the central-
ity of “black boxes” in science and engineering for precisely this reason.

17 I should note, in my defense, that my efforts to get my informants
to read Max Weber, Ferdinand Tönnies, Henry Maine, or Emile Durkheim

notes to chapter 9

347

proved far less successful than my creation of nice Adobe Illustrator dia-
grams that made explicit the reemergence of issues addressed a century
ago. It was not for lack of trying, however.

18 Callon, The Laws of the Markets; Hauser, Moral Minds.
19 Oliver Wendell Holmes, “The Path of Law.”
20 In December 2006 Creative Commons announced a set of licenses

that facilitate the “follow up” licensing of a work, especially one initially
issued under a noncommercial license.

21 Message from the cc-sampling mailing list, Glenn Brown, Subject:
BACKGROUND: “AS APPROPRIATE TO THE MEDIUM, GENRE, AND MARKET

NICHE,” 23 May 2003, http://lists.ibiblio.org/pipermail/cc-sampling/
2003-May/000004.html.

22 Sampling offers a particularly clear example of how Creative Com-
mons differs from the existing practice and infrastructure of music creation
and intellectual-property law. The music industry has actually long recog-
nized the fact of sampling as something musicians do and has attempted to
deal with it by making it an explicit economic practice; the music industry
thus encourages sampling by facilitating the sale between labels and art-
ists of rights to make a sample. Record companies will negotiate prices,
lengths, quality, and quantity of sampling and settle on a price.

This practice is set opposite the assumption, also codified in law, that the
public has a right to a fair use of copyrighted material without payment or
permission. Sampling a piece of music might seem to fall into this category
of use, except that one of the tests of fair use is that the use not impact any
existing market for such uses, and the fact that the music industry has ef-
fectively created a market for the buying and selling of samples means that
sampling now routinely falls outside the fair uses codified in the statute, thus
removing sampling from the domain of fair use. Creative Commons licenses,
on the other hand, say that owners should be able to designate their material
as “sample-able,” to give permission ahead of time, and by this practice to
encourage others to do the same. They give an “honorable” meaning to the
practice of sampling for free, rather than the dishonorable one created by
the industry. It thus becomes a war over the meaning of norms, in the law-
and-economics language of Creative Commons and its founders.

Conclusion

1 See http://cnx.org, http://www.creativecommons.org, http://www
.earlham.edu/~peters/fos/overview.htm, http://www.biobricks.org,
http://www.freebeer.org, http://freeculture.org, http://www.cptech.org/

notes to conclusion

348

a2k, http://www.colawp.com/colas/400/cola467_recipe.html, http://
www.elephantsdream.org, http://www.sciencecommons.org, http://www
.plos.org, http://www.openbusiness.cc, http://www.yogaunity.org, http://
osdproject.com, http://www.hewlett.org/Programs/Education/oer/, and
http://olpc.com.

2 See Clive Thompson, “Open Source Spying,” New York Times Maga-
zine, 3 December 2006, 54.

3 See especially Christen, “Tracking Properness” and “Gone Digital”;
Brown, Who Owns Native Culture? and “Heritage as Property.” Crowd-
sourcing fits into other novel forms of labor arrangements, ranging from
conventional outsourcing and off-shoring to newer forms of bodyshop-
ping and “virtual migration” (see Aneesh, Virtual Migration; Xiang, “Global
Bodyshopping”).

4 Golub, “Copyright and Taboo”; Dibbell, Play Money.

notes to conclusion

Bibliography

Abbate, Janet. Inventing the Internet. Cambridge, Mass: MIT Press, 1999.
Abbate, Janet, and Brian Kahin, eds. Standards Policy for Information Infra-

structure. Cambridge, Mass.: MIT Press, 1995.
Abelson, Harold, and Gerald J. Sussman. The Structure and Interpretation of

Computer Programs. Cambridge, Mass.: MIT Press, 1985.
Akera, Atsushi. “Volunteerism and the Fruits of Collaboration: The IBM User

Group SHARE.” Technology and Culture 42.4 (October 2001): 710–736.
Akera, Atsushi, and Frederik Nebeker, eds. From 0 to 1: An Authoritative

History of Modern Computing. New York: Oxford University Press, 2002.
Anderson, Benedict. Imagined Communities: Reflections on the Origins and

Spread of Nationalism. London: Verso, 1983.
Anderson, Jane, and Kathy Bowery. “The Imaginary Politics of Access to

Knowledge.” Paper presented at the Contexts of Invention Conference,
Cleveland, Ohio, 20–23 April 2006.

Aneesh, A. Virtual Migration: The Programming of Globalization. Durham,
N.C.: Duke University Press, 2006.

350 bibliography

Arendt, Hannah. The Human Condition. 2d ed. University of Chicago Press,
1958.

Balkin, Jack. Cultural Software: A Theory of Ideology. New Haven, Conn.:
Yale University Press, 1998.

Baraniuk, Richard, and W. Joseph King. “Connexions: Sharing Knowledge
and Building Communities.” Sloan-C Review: Perspectives in Quality Online
Education 4.9 (September 2005): 8. http://www.aln.org/publications/
view/v4n9/coverv4n9.htm.

Barbrook, Richard, and Andy Cameron. “The California Ideology.” Science
as Culture 26 (1996): 44–72.

Bardini, Thierry. Bootstrapping: Douglas Engelbart, Co-evolution and the Ori-
gins of Personal Computing. Stanford, Calif.: Stanford University Press,
2001.

Barlow, John Perry. “The Economy of Ideas.” Wired 2.3 (March 1994).
Barry, Andrew. Political Machines: Governing a Technological Society. Lon-

don: Athlone Press, 2001.
Battaglia, Deborah. “ ‘For Those Who Are Not Afraid of the Future’: Raëlian

Clonehood in the Public Sphere.” In E.T. Culture: Anthropology in Outer-
spaces, ed. Deborah Battaglia, 149–79. Durham, N.C.: Duke University
Press, 2005.

Benkler, Yochai. “Coase’s Penguin, or Linux and the Nature of the Firm.”
Yale Law Journal 112.3 (2002): 369–446.

———. “Sharing Nicely: On Shareable Goods and the Emergence of Shar-
ing as a Modality of Economic Production.” Yale Law Journal 114.2
(2004): 273–358.

———. The Wealth of Networks: How Social Production Transforms Markets
and Freedom. New Haven, Conn.: Yale University Press, 2006.

Bergin, Thomas J., Jr., and Richard G. Gibson Jr., eds. History of Program-
ming Languages 2. New York: Association for Computing Machinery
Press, 1996.

Berners-Lee, Tim, with Mark Fischetti. Weaving the Web: The Original Design
and Ultimate Destiny of the World Wide Web by Its Inventor. San Francisco:
Harper San Francisco, 1999.

Biagioli, Mario. Galileo, Courtier: The Practice of Science in the Culture of
Absolutism. Chicago: University of Chicago Press, 1993.

Boczkowski, Pablo. Digitizing the News: Innovation in Online Newspapers.
Cambridge, Mass.: MIT Press, 2004.

Bollier, David. Silent Theft: The Private Plunder of Our Common Wealth. New
York: Routledge, 2002.

Bornstein, George, and Ralph G. Williams, eds. Palimpsest: Editorial Theory
in the Humanities. Ann Arbor: University of Michigan Press, 1993.

351bibliography

Borsook, Paulina. Cyberselfish: A Critical Romp through the Terribly Libertar-
ian Culture of High Tech. New York: Public Affairs, 2000.

Bowker, Geoffrey. Memory Practices in the Sciences. Cambridge, Mass.: MIT
Press, 2006.

Bowker, Geoffrey C., and Susan Leigh Star. Sorting Things Out: Classification
and Its Consequences. Cambridge, Mass.: MIT Press, 1999.

Boyle, James. “Conservatives and Intellectual Property.” Engage 1 (April
2000): 83. http://www.law.duke.edu/boylesite/Federalist.htm.

———. “Mertonianism Unbound? Imagining Free, Decentralized Access to
Most Cultural and Scientific Material.” In Understanding Knowledge as a
Common: From Theory to Practice, ed. Charlotte Hess and Elinor Ostrom,
123–44. Cambridge, Mass.: MIT Press, 2006. http://www.james-boyle
.com/mertonianism.pdf.

———. “A Politics of Intellectual Property: Environmentalism for the Net?”
Duke Law Journal 47.1 (October 1997): 87–116.

———, ed. “The Public Domain.” Special issue, Law and Contemporary
Problems 66.1–2 (winter–spring 2003).

———. “The Second Enclosure Movement and the Construction of the
Public Domain.” In James Boyle, ed., “The Public Domain,” special
issue, Law and Contemporary Problems 66.1–2 (winter–spring 2003):
33–74.

Brock, Gerald. The Second Information Revolution. Cambridge, Mass.: Har-
vard University Press, 2003.

Brooks, Frederick. The Mythical Man-month: Essays on Software Engineering.
Reading, Mass.: Addison-Wesley, 1975.

Brown, Michael. “Heritage as Property.” In Property in Question: Value
Transformation in the Global Economy, ed. Katherine Verdery and Caro-
line Humphrey, 49–68. Oxford: Berg, 2004.

———. Who Owns Native Culture? Cambridge, Mass.: Harvard University
Press, 2003.

Calhoun, Craig, ed. Habermas and the Public Sphere. Cambridge, Mass.: MIT
Press, 1992.

Callon, Michel. The Laws of the Markets. London: Blackwell, 1998.
———. “Some Elements of a Sociology of Translation: Domestication of

the Scallops and the Fishermen of St Brieuc Bay.” In Power, Action and
Belief: A New Sociology of Knowledge, ed. John Law, 196–233. London:
Routledge and Kegan Paul, 1986.

Callon, Michel, Cécile Méadel, and Vololona Rabeharisoa. “The Economy
of Qualities.” Economy and Society 31.2 (May 2002): 194–217.

Campbell-Kelly, Martin. From Airline Reservations to Sonic the Hedgehog: A
History of the Software Industry. Cambridge, Mass.: MIT Press, 2003.

352 bibliography

Campbell-Kelly, Martin, and William Aspray. Computer: A History of the
Information Machine. New York: Basic Books, 1996.

Carrington, Paul D., and Erika King. “Law and the Wisconsin Idea.” Journal
of Legal Education 47 (1997): 297.

Castells, Manuel. The Internet Galaxy: Reflections on the Internet, Business and
Society. New York: Oxford University Press, 2001.

———. The Rise of the Network Society. Cambridge, Mass.: Blackwell,
1996.

Castoriadis, Cornelius. The Imaginary Institution of Society. Cambridge,
Mass.: MIT Press, 1987.

Cerf, Vinton G., and Robert Kahn. “A Protocol for Packet Network Inter-
connection.” IEEE Transactions on Communications 22.5 (May 1974):
637–48.

Chadwick, Owen. The Early Reformation on the Continent. Oxford: Oxford
University Press, 2001.

Chan, Anita. “Coding Free Software, Coding Free States: Free Software
Legislation and the Politics of Code in Peru.” Anthropological Quarterly
77.3 (summer 2004): 531–45.

Chartier, Roger. The Cultural Uses of Print in Early Modern France. Princeton:
Princeton University Press, 1988.

———. The Order of Books: Readers, Authors, and Libraries in Europe between
the Fourteenth and Eighteenth Centuries. Trans. Lydia G. Cochrane. Stan-
ford, Calif.: Stanford University Press, 1994.

Chatterjee, Partha. “A Response to Taylor’s ‘Modes of Civil Society.’ ” Public
Culture 3.1 (1990): 120–21.

Christen, Kim. “Gone Digital: Aboriginal Remix and the Cultural Commons.”
International Journal of Cultural Property 12 (August 2005): 315–45.

———. “Tracking Properness: Repackaging Culture in a Remote Austra-
lian Town.” Cultural Anthropology 21.3 (August 2006): 416–46.

Christensen, Clayton. The Innovator’s Dilemma: When New Technolo-
gies Cause Great Firms to Fail. Boston: Harvard Business School Press,
1997.

Chun, Wendy Hui Kyong. Control and Freedom: Power and Paranoia in the
Age of Fiber Optics. Cambridge, Mass.: MIT Press, 2006.

Clark, David. “The Design Philosophy of the DARPA Internet Protocols.”
1988. In Computer Communications: Architectures, Protocols, and Stan-
dards, 3d ed., ed. William Stallings, 54–62. Los Alamitos, Calif.: IEEE
Computer Society Press, 1992.

Cohen, Julie, Lydia Pallas Loren, Ruth Gana Okediji, and Maureen
O’Rourke, eds. Copyright in a Global Information Economy. Aspen, Colo.:
Aspen Law and Business Publishers, 2001.

353bibliography

Coleman, E. Gabriella. “The Political Agnosticism of Free and Open Source
Software and the Inadvertent Politics of Contrast.” Anthropological Quar-
terly 77.3 (summer 2004): 507–19.

———. “The Social Construction of Freedom: Hackers, Ethics and the Lib-
eral Tradition.” Ph.D. diss., University of Chicago, 2005.

Comaroff, Jean, and John Comaroff. Ethnography and the Historical Imagi-
nation. Boulder, Colo.: Westview, 1992.

Comer, Douglas E. Internetworking with TCP/IP. 4th ed. Upper Saddle River,
N.J.: Prentice Hall, 2000.

———. Operating System Design. 1st ed. 2 vols. Englewood Cliffs, N.J.: Pren-
tice Hall, 1984.

Coombe, Rosemary, and Andrew Herman. “Rhetorical Virtues: Property,
Speech, and the Commons on the World-Wide Web.” Anthropological
Quarterly 77.3 (summer 2004): 559–574.

———. “Your Second Life? Goodwill and the Performativity of Intellectual
Property in Online Digital Gaming.” Cultural Studies 20.2–3 (March–
May 2006): 184–210.

Crain, Patricia. The Story of A: The Alphabetization of America from The
New England Primer to The Scarlet Letter. Stanford, Calif.: Stanford
University Press, 2000.

Critchley, Terry A., and K. C. Batty. Open Systems: The Reality. Englewood
Cliffs, N.J.: Prentice Hall, 1993.

Cussins, Charis. “Ontological Choreography: Agency through Objectification
in Infertility Clinics.” Social Studies of Science 26.3 (1996): 575–610.

Daston, Lorraine, ed. Biographies of Scientific Objects. Chicago: University
of Chicago Press, 2000.

Davis, Martin. Engines of Logic: Mathematicians and the Origin of the Com-
puter. W. W. Norton, 2001.

Dean, Jodi. “Why the Net Is Not a Public Sphere.” Constellations 10.1
(March 2003): 95.

DeLanda, Manuel. Intensive Science and Virtual Philosophy. London: Con-
tinuum Press, 2002.

———. “Open Source: A Movement in Search of a Philosophy.” Paper pre-
sented to the Institute for Advanced Study, Princeton, N.J., 2001. http://
www.cddc.vt.edu/host/delanda/pages/opensource.htm.

———. A Thousand Years of Non-linear History. New York: Zone Books, 1997.
Dewey, John. Freedom and Culture. 1939; repr., Amherst, N.Y.: Prometheus

Books, 1989.
———. Liberalism and Social Action. New York: G. P. Putnam’s Sons, 1935.
———. The Public and Its Problems. Chicago: Swallow Press, 1927; repr.,

Sage Books / Swallow Press, 1954.

354 bibliography

Dibbell, Julian. Play Money: Or, How I Quit My Day Job and Made Millions
Trading Virtual Loot. New York: Basic Books, 2006.

———. “A Rape in Cyberspace.” Village Voice 38.51 (December 1993): 21.
Dibona, Chris, et al. Open Sources: Voices from the Open Source Revolution.

Sebastopol, Calif.: O’Reilly Press, 1999.
DiMaggio, Paul, Esther Hargittai, C. Celeste, and S. Shafer. “From Unequal

Access to Differentiated Use: A Literature Review and Agenda for Re-
search on Digital Inequality.” In Social Inequality, ed. Kathryn Necker-
man, 355–400. New York: Russell Sage Foundation, 2004.

Downey, Gary L. The Machine in Me: An Anthropologist Sits among Computer
Engineers. London: Routledge, 1998.

Doyle, Richard. Wetwares: Experiments in Postvital Living. Minneapolis: Uni-
versity of Minnesota Press, 2003.

Drake, William. “The Internet Religious War.” Telecommunications Policy 17
(December 1993): 643–49.

Dreyfus, Hubert. On the Internet. London: Routledge, 2001.
Dumit, Joseph. Picturing Personhood: Brain Scans and Biomedical Identity.

Princeton: Princeton University Press, 2004.
Eagleton, Terry. Ideology: An Introduction. London: Verso Books, 1991.
———. The Ideology of the Aesthetic. Cambridge, Mass.: Blackwell, 1990.
Edwards, Paul N. The Closed World: Computers and the Politics of Discourse

in the Cold War. Cambridge, Mass.: MIT Press, 1996.
———. “Infrastructure and Modernity: Force, Time, and Social Organiza-

tion in the History of Sociotechnical Systems.” In Modernity and Tech-
nology, ed. Thomas Misa, Philip Brey, and Andrew Feenberg, 185–225.
Cambridge, Mass.: MIT Press, 2003.

Eisenstein, Elizabeth. The Printing Press as an Agent of Change: Communica-
tions and Cultural Transformations in Early Modern Europe. 2 vols. Cam-
bridge: Cambridge University Press, 1979.

Faulkner, W. “Dualisms, Hierarchies and Gender in Engineering.” Social
Studies of Science 30.5 (2000): 759–92.

Febvre, Lucien, and Henri-Jean Martin. The Coming of the Book: The Impact of
Printing 1450–1800. Trans. David Gerard. 1958; repr., London: Verso,
1976.

Feller, Joseph, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani,
eds. Perspectives on Free and Open Source Software. Cambridge, Mass.: MIT
Press, 2005.

Feyerabend, Paul. Against Method. 3rd ed. 1975. London: Verso Books,
1993.

Fielding, Roy T. “Shared Leadership in the Apache Project.” Communica-
tions of the ACM 42.4 (April 1999): 42–43.

355bibliography

Fischer, Franklin M. Folded, Spindled, and Mutilated. Cambridge, Mass.: MIT
Press, 1983.

Fischer, Michael M. J. “Culture and Cultural Analysis as Experimental Sys-
tems.” Cultural Anthropology 22.1 (Feburary 2007): 1–65.

———. Emergent Forms of Life and the Anthropological Voice. Durham, N.C.:
Duke University Press, 2003.

———. “Worlding Cyberspace.” In Critical Anthropology Now, ed. George
Marcus, 245–304. Santa Fe, N.M.: School for Advanced Research Press,
1999.

Flichy, Patrice. The Internet Imaginaire. Trans. Liz Carey-Libbrecht. Cam-
bridge, Mass.: MIT Press, 2007.

Fortun, Kim. Advocating Bhopal: Environmentalism, Disaster, New Global Or-
ders. Chicago: University of Chicago Press, 2003.

———. “Figuring Out Ethnography.” In Fieldwork Isn’t What It Used to Be,
ed. George Marcus and James Faubion. Chicago: University of Chicago
Press, forthcoming.

Fortun, Kim, and Mike Fortun. “Scientific Imaginaries and Ethical Pla-
teaus in Contemporary U.S. Toxicology.” American Anthropologist 107.1
(2005): 43–54.

Foucault, Michel. La naissance de la biopolitique: Cours au Collège de France
(1978–1979). Paris: Gallimard / Le Seuil, 2004.

———. “What Is an Author?” In The Foucault Reader, ed. P. Rabinow, 101–20.
New York: Pantheon Books, 1984.

———. 1997. “What Is Enlightenment?” In Ethics, ed. Paul Rabinow, 303–17.
Vol. 2 of The Essential Works of Foucault 1954–1984. New York: New Press,
1997.

Freeman, Carla. High Tech and High Heels in the Global Economy. Durham,
N.C.: Duke University Press, 2000.

Freeman, Jo, and Victoria Johnson, eds. Waves of Protest: Social Movements
since the Sixties. Lanham, Md.: Rowman and Littlefield, 1999.

Galison, Peter. How Experiments End. Chicago: University of Chicago Press,
1987.

———. Image and Logic: The Material Culture of Microphysics. Chicago: Uni-
versity of Chicago Press, 1997.

Galloway, Alexander. Protocol, or How Control Exists after Decentralization.
Cambridge, Mass.: MIT Press, 2004.

Gancarz, Mike. Linux and the UNIX Philosophy. Boston: Digital Press,
2003.

———. The Unix Philosophy. Boston: Digital Press, 1994.
Gaonkar, Dilip. “Toward New Imaginaries: An Introduction.” Public Culture

14.1 (2002): 1–19.

356 bibliography

Geertz, Clifford. “Ideology as a Cultural System.” In The Interpretation of
Cultures, 193–233. New York: Basic Books, 1973.

Gerlach, Luther P., and Virginia H. Hine. People, Power, Change: Movements
of Social Transformation. Indianapolis: Bobbs-Merrill, 1970.

Ghosh, Rishab Ayer. “Cooking Pot Markets: An Economic Model for the
Trade in Free Goods.” First Monday 3.3 (1998). http://www.firstmonday
.org/issues/issue3_3/ghosh/.

Gillespie, Tarleton. “Engineering a Principle: ‘End to End’ in the Design of
the Internet.” Social Studies of Science 36.3 (2006): 427–57.

Golub, Alex. “Copyright and Taboo.” Anthropological Quarterly 77.3 (2004):
521–30.

Gray, Pamela. Open Systems: A Business Strategy for the 1990s. London:
McGraw-Hill, 1991.

Green, Ellen, and Allison Adam. Virtual Gender: Technology, Consumption
and Identity. London: Routledge, 2001.

Green, Ian. The Christian’s ABCs: Catechisms and Catechizing in England
c1530–1740. Oxford: Oxford University Press, 1996.

———. Print and Protestantism in Early Modern England. Oxford: Oxford
University Press, 2000.

Green, Sarah, Penny Harvey, and Hannah Knox. “Scales of Place and Net-
works: An Ethnography of the Imperative to Connect through Infor-
mation and Communication Technologies.” Current Anthropology 46.5
(December 2005): 805–26.

Grier, David Alan. When Computers Were Human. Princeton: Princeton Uni-
versity Press, 2005.

Grier, David Alan, and Mary Campbell. “A Social History of Bitnet and List-
serv 1985–1991.” IEEE Annals of the History of Computing (April–June
2000): 32–41.

Grint, Keith, and Rosalind Gill. The Gender-Technology Relation: Contempo-
rary Theory and Research. London: Taylor and Francis, 1995.

Habermas, Jürgen. The Structural Transformation of the Public Sphere: An In-
quiry into a Category of Bourgeois Society. Trans. Thomas Burger, with the
assistance of Frederick Lawrence. Cambridge, Mass.: MIT Press, 1991.

Hafner, Katie. Where Wizards Stay Up Late: The Origins of the Internet. New
York: Simon and Schuster, 1998.

Hamerly, Jim, and Tom Paquin, with Susan Walton. “Freeing the Source.”
In Open Sources: Voices from the Open Source Revolution, by Chris Dibona
et al., 197–206. Sebastopol, Calif.: O’Reilly Press, 1999.

Hardin, Garrett. “The Tragedy of the Commons.” Science 162 (1968):
1,243–48.

357bibliography

Hashagen, Ulf, Reinhard Keil-Slawik, and Arthur Norberg, eds. History of
Computing—Software Issues. Berlin: Springer Verlag, 2002.

Hauben, Michael, and Rhonda Hauben. Netizens: On the History and Impact
of Usenet and the Internet. Los Alamitos, Calif.: IEEE Computer Society
Press, 1997.

Hauser, Marc. Moral Minds: How Nature Designed Our Universal Sense of
Right and Wrong. New York: Ecco Press, 2006.

Hayden, Cori. When Nature Goes Public: The Making and Unmaking of Bio-
prospecting in Mexico. Princeton: Princeton University Press, 2003.

Hayek, Friedrich A. Law, Legislation and Liberty. Vol. 1, Rules and Order.
Chicago: University of Chicago Press, 1970.

Helmreich, Stefan. Silicon Second Nature: Culturing Artificial Life in a Digital
World. Berkeley: University of California Press, 1998.

Herring, Susan C. “Gender and Democracy in Computer-Mediated Commu-
nication.” In Computerization and Controversy: Value Conflicts and Social
Choices, ed. Rob Kling and Charles Dunlop, 476–89. 2d ed. Orlando:
Academic Press, 1995.

Hess, Charlotte, and Elinor Ostrom, eds. Understanding Knowledge as a Com-
mon: From Theory to Practice. Cambridge, Mass.: MIT Press, 2006.

Himanen, Pekka. The Hacker Ethic and the Spirit of the Information Age. New
York: Random House, 2001.

Hine, Christine. Virtual Ethnography. London: Sage, 2000.
Holmes, Douglas, and George Marcus. “Cultures of Expertise and the

Management of Globalization: Toward the Re-Functioning of Ethnog-
raphy.” In Global Assemblages: Technology, Politics, and Ethics as Anthro-
pological Problems, ed. Aiwa Ong and Stephen J. Collier, 235–52. Boston:
Blackwell, 2005.

Holmes, Oliver Wendell. “The Path of Law.” Harvard Law Review 10 (1897):
457.

Hopkins, Patrick D., ed. Sex/Machine: Readings in Culture, Gender and Tech-
nology. Bloomington: Indiana University Press, 1998.

Huberman, Bernardo A., ed. The Ecology of Computation. Amsterdam:
North-Holland, 1988.

Huxley, Julian. New Bottles for New Wine: Essays. New York: Harper,
1957.

Jaszi, Peter, and Martha Woodmansee, eds. The Construction of Authorship:
Textual Appropriation in Law and Literature. Durham, N.C.: Duke Univer-
sity Press, 1994.

Johns, Adrian. The Nature of the Book: Print and Knowledge in the Making.
Chicago: University of Chicago Press, 1998.

358 bibliography

Jorgensen, Neils. “Incremental and Decentralized Integration in FreeBSD.”
In Perspectives on Free and Open Source Software, ed. Feller et al., 227–44.
Cambridge, Mass.: MIT Press, 2004.

———. “Putting It All in the Trunk: Incremental Software Development
in the FreeBSD Open Source Project.” Information Systems Journal 11.4
(2001): 321–36.

Kahn, Robert, et al. “The Evolution of the Internet as a Global Informa-
tion System.” International Information and Libraries Review 29 (1997):
129–51.

Kahn, Robert, and Vint Cerf. “A Protocol for Packet Network Intercommu-
nication.” IEEE Transactions on Communications Com-22.5 (May 1974):
637–44.

Keating, Peter, and Alberto Cambrosio. Biomedical Platforms: Realigning
the Normal and the Pathological in Late-twentieth-century Medicine. Cam-
bridge, Mass.: MIT Press, 2003.

Kelty, Christopher, ed. “Culture’s Open Sources.” Anthropological Quar-
terly 77.3 (summer 2004): 499–506. http://aq.gwu.edu/archive/table_
summer04.htm.

———. “Punt to Culture.” Anthropological Quarterly 77.3 (summer 2004):
547–58.

Kendall, Lori. “‘Oh No! I’m a NERD!’ Hegemonic Masculinity on an Online
Forum.” Gender and Society 14.2 (2000): 256–74.

Keves, Brian William. “Open Systems Formal Evaluation Process.” Paper
presented at the USENIX Association Proceedings of the Seventh Sys-
tems Administration Conference (LISA VII), Monterey, California, 1–5
November 1993.

Kidder, Tracy. The Soul of a New Machine. Boston: Little, Brown, 1981.
Kirkup, Gill, Linda Janes, Kath Woodward, and Fiona Hovenden. The Gen-

dered Cyborg: A Reader. London: Routledge, 2000.
Kittler, Friedrich. Discourse Networks 1800/1900. Trans. Michael Metteer,

with Chris Cullens. 1985; repr., Stanford, Calif.: Stanford University
Press, 1990.

———. Gramophone, Film, Typewriter. Trans. Geoffry Winthrop-Young and
Michael Wutz. 1986; repr., Stanford, Calif.: Stanford University Press,
1999.

Kling, Rob. Computerization and Controversy: Value Conflicts and Social
Choices. San Diego: Academic Press, 1996.

Knuth, Donald. The Art of Computer Programming. 3d ed. Reading, Mass.:
Addison-Wesley, 1997.

Kohler, Robert. Lords of the Fly: Drosophila Genetics and the Experimental Life.
Chicago: University of Chicago Press, 1994.

359bibliography

Laclau, Ernesto, and Chantal Mouffe. Hegemony and Socialist Strategy. Lon-
don: Verso, 1985.

Landecker, Hannah. Culturing Life: How Cells Became Technologies. Cam-
bridge, Mass.: Harvard University Press, 2007.

Latour, Bruno. “Drawing Things Together.” In Representation in Scientific
Practice, ed. Michael Lynch and Steve Woolgar, 19–68. Cambridge,
Mass.: MIT Press, 1990.

———. Pandora’s Hope: Essays on the Reality of Science Studies. Cambridge,
Mass.: Harvard University Press, 1999.

———. Re-assembling the Social: An Introduction to Actor-Network Theory.
Oxford: Oxford University Press, 2005.

———. Science in Action: How to Follow Scientists and Engineers through So-
ciety. Cambridge, Mass.: Harvard University Press, 1987.

———. “What Rules of Method for the New Socio-scientific Experiments.”
In Experimental Cultures: Configurations between Science, Art and Technol-
ogy 1830–1950, Conference Proceedings, 123. Berlin: Max Planck Insti-
tute for the History of Science, 2001.

Latour, Bruno, and Peter Weibel, eds. Making Things Public: Atmospheres of
Democracy. Cambridge, Mass.: MIT Press, 2005.

Law, John. Aircraft Stories: Decentering the Object in Technoscience. Durham,
N.C.: Duke University Press, 2002.

———. “Technology and Heterogeneous Engineering: The Case of Portu-
guese Expansion.” In The Social Construction of Technological Systems: New
Directions in the Sociology and History of Technology, ed. W. E. Bijker, T. P.
Hughes, and T. J. Pinch, 111–134. Cambridge, Mass.: MIT Press, 1987.

Law, John, and John Hassard. Actor Network Theory and After. Sociological
Review Monograph. Malden, Mass.: Blackwell 1999.

Leach, James, Dawn Nafus, and Berbard Krieger. Gender: Integrated Re-
port of Findings. Free/Libre and Open Source Software: Policy Support
(FLOSSPOLS) D 16, 2006. http://www.jamesleach.net/downloads/
FLOSSPOLS-D16-Gender_Integrated_Report_of_Findings.pdf.

Lee, J. A. N., R. M. Fano, A. L. Scherr, F. J. Corbato, and V. A. Vyssotsky.
“Project MAC.” Annals of the History of Computing 14.2 (1992): 9–42.

Lerner, Josh, and Jean Tirole. “Some Simple Economics of Open Source.”
Industrial Economics 50.2 (June 2002): 197–234.

Lessig, Lawrence. Code: Version 2.0. New York: Basic Books, 2006.
———. Code and Other Laws of Cyber Space. New York: Basic Books, 1999.
———. Free Culture: The Nature and Future of Creativity. New York: Penguin,

2003.
———. The Future of Ideas: The Fate of the Commons in a Connected World.

New York: Random House, 2001.

360 bibliography

———. “The New Chicago School.” Legal Studies 27.2 (1998): 661–91.
Levy, Steven. Hackers: Heroes of the Computer Revolution. New York: Basic

Books, 1984.
Libes, Don, and Sandy Ressler. Life with UNIX: A Guide for Everyone. Engle-

wood Cliffs, N.J.: Prentice Hall, 1989.
Light, Jennifer. “When Computers Were Women.” Technology and Culture

40.3 (July 1999): 455–483.
Lions, John. Lions’ Commentary on UNIX 6th Edition with Source Code. 1977;

repr., San Jose: Peer to Peer Communications, 1996.
Lippmann, Walter. The Phantom Public. New York: Macmillan, 1927.
Litman, Jessica. Digital Copyright. New York: Prometheus Books, 2001.
Liu, Alan. The Laws of Cool: Knowledge Work and the Culture of Information.

Chicago: University of Chicago Press, 2004.
MacKenzie, Adrian. Cutting Code: Software and Sociality. Digital Formations

Series. New York: Peter Lang, 2005.
MacKenzie, Donald A. Mechanizing Proof: Computing, Risk, and Trust. Cam-

bridge, Mass.: MIT Press, 2001.
Mahoney, Michael. “Finding a History for Software Engineering.” Annals

of the History of Computing 26.1 (2004): 8–19.
———. “The Histories of Computing(s).” Interdisciplinary Science Reviews

30.2 (2005): 119–35.
———. “In Our Own Image: Creating the Computer.” In The Changing Im-

age of the Sciences, ed. Ida Stamhuis, Teun Koetsier, and Kees de Pater,
9–28. Dordrecht: Kluwer Academic Publishers, 2002.

———. “The Roots of Software Engineering.” CWI Quarterly 3.4 (1990):
325–34.

———. “The Structures of Computation.” In The First Computers: History
and Architectures, ed. Raul Rojas and Ulf Hashagen, 17–32. Cambridge,
Mass.: MIT Press, 2000.

Malamud, Carl. Exploring the Internet: A Technical Travelogue. Englewood
Cliffs, N.J.: Prentice Hall, 1992.

Mannheim, Karl. Ideology and Utopia: Introduction to the Sociology of Knowl-
edge. New York: Harcourt and Brace, 1946.

Marcus, George. Ethnography through Thick and Thin. Chicago: University
of Chicago Press, 1998.

Marcus, George, and James Clifford. Writing Culture: The Poetics and
Politics of Ethnography. Berkeley: University of California Press,
1986.

Marcus, George, and Michael M. J. Fischer. Anthropology as Cultural Cri-
tique: An Experimental Moment in the Human Sciences. Chicago: University
of Chicago Press, 1986.

361bibliography

Margolis, Jane, and Allen Fisher. Unlocking the Clubhouse: Women in Com-
puting. Cambridge, Mass.: MIT Press, 2002.

Martin, James. Viewdata and the Information Society. Englewood Cliffs, N.J.:
Prentice Hall, 1982.

Matheson, Peter. The Imaginative World of the Reformation. Edinburgh, Scot-
land: T and T Clark, 2000.

McKenna, Regis. Who’s Afraid of Big Blue? How Companies Are Challenging
IBM—and Winning. Reading, Mass.: Addison-Wesley, 1989.

McKusick, M. Kirk. “Twenty Years of Berkeley Unix: From AT&T-owned
to Freely Redistributable.” In Open Sources: Voices from the Open Source
Revolution, Chris Dibona et al., 31–46. ACM Sebastopol, Calif.: O’Reilly
Press, 1999.

McLuhan, Marshall. The Gutenberg Galaxy: The Making of Typographic Man.
Toronto: University of Toronto Press, 1966.

———. Understanding Media: The Extensions of Man. 1964; repr., Cam-
bridge, Mass.: MIT Press, 1994.

Merges, Robert, Peter Menell, and Mark Lemley, eds. Intellectual Property in
the New Technological Age. 3d ed. New York: Aspen Publishers, 2003.

Merton, Robert. “The Normative Structure of Science.” In The Sociology of
Science: Theoretical and Empirical Investigations, 267–80. Chicago: Uni-
versity of Chicago Press, 1973.

Miller, Daniel, and Don Slater. The Internet: An Ethnography. Oxford: Berg,
2000.

Misa, Thomas, Philip Brey, and Andrew Feenberg, eds. Modernity and Tech-
nology. Cambridge, Mass.: MIT Press, 2003.

Mockus, Audris, Roy T. Fielding, and James Herbsleb. “Two Case Studies of
Open Source Software Development: Apache and Mozilla.” ACM Trans-
actions in Software Engineering and Methodology 11.3 (2002): 309–46.

Mol, Annemarie. The Body Multiple: Ontology in Medical Practice. Durham,
N.C.: Duke University Press, 2002.

Moody, Glyn. Rebel Code: Inside Linux and the Open Source Revolution. Cam-
bridge, Mass.: Perseus, 2001.

Mooers, Calvin. “Computer Software and Copyright.” Computer Surveys 7.1
(March 1975): 45–72.

Mueller, Milton. Ruling the Root: Internet Governance and the Taming of Cy-
berspace. Cambridge, Mass.: MIT Press, 2004.

Naughton, John. A Brief History of the Future: From Radio Days to Internet
Years in a Lifetime. Woodstock, N.Y.: Overlook Press, 2000.

Noble, David. “Digital Diploma Mills: The Automation of Higher Educa-
tion.” First Monday 3.1 (5 January 1998). http://www.firstmonday.org/
issues/issue3_1/.

362 bibliography

Norberg, Arthur L., and Judy O’Neill. A History of the Information Techniques
Processing Office of the Defense Advanced Research Projects Agency. Min-
neapolis: Charles Babbage Institute, 1992.

———. Transforming Computer Technology: Information Processing for the
Pentagon, 1962–1986. Baltimore: Johns Hopkins University Press, 1996.

Ong, Walter. Ramus, Method, and the Decay of Dialogue: From the Art of Dis-
course to the Art of Reason. 1983; repr., Chicago: University of Chicago
Press, 2004.

Ostrom, Elinor. Governing the Commons: The Evolution of Institutions for Col-
lective Action. Cambridge: Cambridge University Press, 1991.

Perens, Bruce. “The Open Source Definition.” In Open Sources: Voices from
the Open Source Revolution, Dibona et al., 171–188. Sebastopol, Calif.:
O’Reilly Press, 1999. http://perens.com/OSD.html and http://www
.oreilly.com/catalog/opensources/book/perens.html.

Pfaffenberger, Bryan. “ ‘A Standing Wave in the Web of our Communica-
tions’: USENet and the Socio-technical Construction of Cyberspace Val-
ues.” In From Usenet to CoWebs: Interacting with Social Information Spaces,
ed. Christopher Lueg and Danyel Fisher, 20–43. London: Springer, 2003.

Rabinow, Paul. Anthropos Today: Reflections on Modern Equipment. Prince-
ton: Princeton University Press, 2003.

———. Essays on the Anthropology of Reason. Princeton: Princeton Univer-
sity Press, 1997.

Ratto, Matt. “Embedded Technical Expression: Code and the Leveraging of
Functionality.” Information Society 21.3 (July 2005): 205–13.

———. “The Pressure of Openness: The Hybrid work of Linux Free/Open
Source Kernel Developers.” Ph.D. diss., University of California, San
Diego, 2003.

Raymond, Eric S. The Art of UNIX Programming. Boston: Addison-Wesley,
2004.

———. The Cathedral and the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary. Sebastopol, Calif.: O’Reilly Press, 2001. See
esp. “Homesteading the Noosphere,” 79–135.

———, ed. The New Hackers’ Dictionary. 3d ed. Cambridge, Mass.: MIT
Press, 1996.

Rheinberger, Hans-Jörg. Towards a History of Epistemic Things: Synthesiz-
ing Proteins in the Test Tube. Stanford, Calif.: Stanford University Press,
1997.

Rheingold, Howard. The Virtual Community: Homesteading on the Electronic
Frontier. Rev. ed. 1993; repr., Cambridge, Mass.: MIT Press, 2000.

Ricoeur, Paul. Lectures on Ideology and Utopia. New York: Columbia Uni-
versity Press, 1986.

363bibliography

Riles, Annelise. “Real Time: Unwinding Technocratic and Anthropological
Knowledge.” American Ethnologist 31.3 (August 2004): 392–405.

Ritchie, Dennis. “The UNIX Time-Sharing System: A Retrospective.” Bell Sys-
tem Technical Journal 57.6, pt. 2 (July–August 1978). http://cm.bell-labs
.com/cm/cs/who/dmr/retroindex.html.

Rose, Mark. Authors and Owners: The Invention of Copyright. Cambridge,
Mass.: Harvard University Press, 1995.

Salus, Peter. Casting the Net: From ARPANET to Internet and Beyond. Read-
ing, Mass.: Addison-Wesley, 1995.

———. A Quarter Century of UNIX. Reading, Mass.: Addison-Wesley, 1994.
Schmidt, Susanne K., and Raymund Werle. Coordinating Technology: Stud-

ies in the International Standardization of Telecommunications. Cambridge,
Mass.: MIT Press, 1998.

Segaller, Stephen. Nerds 2.0.1: A Brief History of the Internet. New York: TV
Books, 1998.

Shaikh, Maha, and Tony Cornford. “Version Management Tools: CVS to BK
in the Linux Kernel.” Paper presented at the Twenty-fifth International
Conference on Software Engineering—Taking Stock of the Bazaar: The
Third Workshop on Open Source Software Engineering, Portland, Or-
egon, 3–10 May 2003.

Shapin, Steven. The Social History of Truth: Civility and Science in Seventeenth
Century England. Chicago: University of Chicago Press, 1994.

Shapin, Steven, and Simon Schaffer. Leviathan and the Air Pump: Hobbes,
Boyle and the Experimental Life. Princeton: Princeton University Press,
1985.

Smith, Adam. The Theory of Moral Sentiments. 1759; repr., Cambridge: Cam-
bridge University Press, 2002.

Stallings, William. Data and Computer Communications. London: Macmil-
lan, 1985.

Stallman, Richard. “The GNU Manifesto.” Dr. Dobb’s 10.3 (March 1985):
30–35.

St. Amour, Paul K. The Copywrights: Intellectual Property and the Literary
Imagination. Ithaca, N.Y.: Cornell University Press, 2003.

Star, Susan Leigh, ed. The Cultures of Computing. Malden, Mass.: Blackwell,
1995.

Star, Susan Leigh, and Karen Ruhleder. “Steps towards an Ecology of
Infrastructure: Complex Problems in Design and Access for Large-
scale Collaborative Systems.” Information Systems Research 7 (1996):
111–33.

Stephenson, Neal. In the Beginning Was the Command Line. New York: Avon /
Perennial, 1999.

364 bibliography

Sunshine, Carl. Computer Network Architectures and Protocols. 2d ed. New
York: Plenum Press, 1989.

Takahashi, Shigeru. “The Rise and Fall of the Plug Compatible Manufac-
turers.” IEEE Annals of the History of Computing (January–March 2005):
4–16.

Tanenbaum, Andrew. Computer Networks. 1st ed. Upper Saddle River, N.J.:
Prentice Hall, 1981.

———. Operating Systems: Design and Implementation. 1st ed. Englewood
Cliffs, N.J.: Prentice Hall, 1987.

———. “The UNIX Marketplace in 1987: Life, the UNIverse and Every-
thing.” In Proceedings of the Summer 1987 USENIX Conference, 419–24.
Phoenix, Ariz.: USENIX, 1987.

Taylor, Charles. Modern Social Imaginaries. Durham, N.C.: Duke University
Press, 2004.

———. “Modes of Civil Society.” Public Culture 3.1 (1990): 95–132.
———. Multiculturalism and the Politics of Recognition. Princeton, N.J.:

Princeton University Press, 1992.
———. Sources of the Self: The Making of the Modern Identity. Cambridge,

Mass.: Harvard University Press, 1989.
Thompson, Charis. Making Parents: The Ontological Choreography of Repro-

ductive Technologies. Cambridge, Mass.: MIT Press, 2005.
Thompson, Ken, and Dennis Ritchie. “The UNIX Time-Sharing System.”

Communications of the ACM 17.7 (July 1974): 365–75.
Tichy, Walter F. “RCS: A System for Version Control.” Software: Practice and

Experience 15.7 (July 1985): 637–54.
Torvalds, Linus, with David Diamond. Just for Fun: The Story of an Acciden-

tal Revolutionary. New York: HarperCollins, 2002.
Tuomi, Ilkka. Networks of Innovation: Change and Meaning in the Age of the

Internet. New York: Oxford University Press, 2002.
Turing, Alan. “On Computable Numbers, with an Application to the Ent-

scheidungsproblem.” Proceedings of the London Mathematical Society 2.1
(1937): 230.

Turkle, Sherry. Life on the Screen: Identity in the Age of the Internet. New
York: Simon and Schuster, 1995.

———. The Second Self: Computers and the Human Spirit. New York: Simon
and Schuster, 1984.

Turner, Fred. From Counterculture to Cyberculture: Stewart Brand, the Whole
Earth Network, and the Rise of Digital Utopianism. Chicago: University of
Chicago Press, 2006.

———. “Where the Counterculture Met the New Economy.” Technology and
Culture 46.3 (July 2005): 485–512.

365bibliography

Ullman, Ellen. The Bug: A Novel. New York: Nan A. Talese, 2003.
———. Close to the Machine: Technophilia and Its Discontents. San Francisco:

City Lights, 1997.
Vaidhyanathan, Siva. Copyrights and Copywrongs; The Rise of Intellectual

Property and How It Threatens Creativity. New York: New York University
Press, 2001.

Vetter, Greg R. “The Collaborative Integrity of Open-Source Software.”
Utah Law Review 2004.2 (2004): 563–700.

———. “ ‘Infectious Open Source Software: Spreading Incentives or Pro-
moting Resistance?” Rutgers Law Journal 36.1 (fall 2004): 53–162.

Vinge, Vernor. “The Coming Technological Singularity: How to Survive
in the Post-Human Era” (1993). http://www.rohan.sdsu.edu/faculty/
vinge/misc/singularity.html (accessed 18 August 2006).

Von Hippel, Eric. Democratizing Innovation. Cambridge, Mass.: MIT Press,
2005.

Wajcman, Judy. Feminism Confronts Technology. Cambridge: Polity, 1991.
———. “Reflections on Gender and Technology Studies: In What State Is

the Art?” Social Studies of Science 30.3 (2000): 447–64.
Waldrop, Mitchell. The Dream Machine: J. C. R. Licklider and the Revolution

that Made Computing Personal. New York: Viking, 2002.
Walsh, John, and Todd Bayma. “Computer Networks and Scientific Work.”

Social Studies of Science 26.3 (August 1996): 661–703.
Warner, Michael. The Letters of the Republic: Publication and the Public Sphere

in Eighteenth-century America. Cambridge, Mass.: Harvard University
Press, 1990.

———. “Publics and Counterpublics.” Public Culture 14.1 (2002): 49–90.
———. Publics and Counterpublics. New York: Zone Books, 2003.
Wayner, Peter. Free for All: How LINUX and the Free Software Movement Un-

dercut the High-Tech Titans. New York: Harper Business, 2000.
Weber, Max. “Objectivity in the Social Sciences and Social Policy.” In

The Methodology of the Social Sciences, trans. and ed. Edward Shils and
Henry A. Finch, 50–112. New York: Free Press, 1949.

Weber, Steven. The Success of Open Source. Cambridge, Mass.: Harvard
University Press, 2004.

Wexelblat, Richard L., ed. History of Programming Languages. New York:
Academic Press, 1981.

Williams, Sam. Free as in Freedom: Richard Stallman’s Crusade for Free Soft-
ware. Sebastopol, Calif.: O’Reilly Press, 2002.

Wilson, Fiona. “Can’t Compute, Won’t Compute: Women’s Participation in
the Culture of Computing.” New Technology, Work and Employment 18.2
(2003): 127–42.

366 bibliography

Wilson, Samuel M., and Leighton C. Peterson. “The Anthropology of Online
Communities.” Annual Reviews of Anthropology 31 (2002): 449–67.

Xiang, Biao. “Global Bodyshopping”: An Indian Labor System in the Informa-
tion Technology Industry. Princeton: Princeton University Press, 2006.

Žižek, Slavoj, ed. Mapping Ideology. London: Verso, 1994.

Abelson, Hal, 30, 252, 259–260
Actor Network Theory, 315n19,

323n20, 344n1
Adaptability, 10, 15; adaptation

vs., 337n2; as form of critique,
211, 235–236; planning vs., 211,
217–222, 237–239. See also
Modifiability

Affinity (of geeks), 10, 28–29, 34,
43, 61–62, 77, 94, 113, 187, 246,
299–300, 303

Allegory, of Protestant Reformation,
65–76, 94, 114, 149

American National Standards
Institute (ANSI), 157, 329n19

Amicas (corporation), 28–34,
44–45, 80–86, 150

Anarchism, 214, 309
Andreessen, Marc, 100–102, 223
Antitrust, 54, 124, 162–164, 170,

326n21
Apache (Free Software project),

15, 108, 111, 212, 222–229,
231, 277, 339n16; individual vs.
group innovation, 226; naming
of, 339n17

Applied Data Research (corpora-
tion), 124

Arendt, Hannah, 22, 78
Arpanet (network), 120, 138–

141, 167–174, 181, 207, 215,
223, 333n9, 354n. See also
Networks

Artificial Intelligence, 86–88

Index

index368

Artificial Intelligence Lab (AI Lab),
at MIT, 184–188, 206–208

Assemblage, 313n9
AT&T, 119–120, 126–131, 160, 165,

192, 201, 216, 307; Bell Labora-
tories, 126–131, 230, 238; dives-
titure in 1984, 154, 201; version
of EMACS, 194, 196; version of
UNIX, 138, 153

Attribution: copyright licenses and,
265, 283–284, 286; disavowal of,
295–296

Authorship, 75, 195, 274, 282–293,
copyright vs., 244n4; moral
rights of, 257; order of, 346n14;
ownership vs., 205, 284

Availability: open systems and, 152,
166–167, 175–176; reorientation
of power and knowledge and,
10–13, 308–310, 313n8

Bangalore, 43–46
Baraniuk, Richard, 244–258,

271–272, 299, 341n1
Barlow, John Perry, 46, 55, 264
Behlendorf, Brian, 110–111; as head

of Apache, 223–229
Bell Laboratories. See AT&T
Bentham, Jeremy, 181–182
Berkeley Systems Distribution (BSD)

(version of UNIX), 111, 137–141,
153, 157, 176, 238, 327n35;
FreeBSD, 219, 226, 231, 338n4

Berkman Center for Internet and
Society, 259

Berlin, 19–20, 27–28, 36–38
Berners-Lee, Tim, 103, 177, 223
Bitkeeper (Source Code Management

software), 232–236
Blogosphere, as recursive public,

304
Bolt, Beranek, and Newman (BBN),

139–141
Bone, Jeff, 51–61
Bowker, Geoffrey, 344n1

Boyle, James, 30, 256–268, 313n11
Brooks, Frederick, 124, 325n14
Brown, Glenn Otis, 264–268,

293–300, 343n14; on history of
legal realism, 343n20

Bruno, Giordano, 170, 331n41
BSD. See Berkeley Systems

Distribution
BSD License, 104, 140
Bugs, 106, 224, 230, 237
Burris, C. Sidney, 248

C (programming language), 119,
126, 329n19

Calvinism, 93
“Cathedral and the Bazaar,”

109–110, 243, 353n1
Censorship, 51, 53, 55–56
Cerf, Vinton, 138, 172–173
Chari, Bharath, 45
Clark, David, 58, 60, 172
Coleman, Gabriella, 180, 337n54,

340n32, 341n43, 346n15
Collaboration: competition vs., 152,

158–166, 307; different meanings
of, 228–229; forking vs., 287–288.
See also coordination

Commité Consultative de
Information, Technologie et
Télécommunications (CCITT),
169, 175

Commons, ix, xi, 16–17, 33, 246,
313n11

Communities, 214, 252, 281; norms
and 281, 285–293

comp.os.minix, 217; “Linux Is
Obsolete” debate on, 218–219

Computer Corporation of America
(CCA), 190–199, 201–202,
333n14, 336n47

Concurrent Versioning System (cvs),
106, 212, 229; history of, 231;
Linux and 232

Connexions project, 3,11, 17,
244–246; connection to Creative

index 369

Commons, 258–259, 262–263; as
“factory of knowledge, 249–251;
as Free Software project, 254–255;
history and genesis of, 247–258;
line between content and software,
279; meaning of publication in,
275–286; model of learning
in, 249, 253–254; modules in,
249–251; Open CourseWare, 252,
263; relationship to education,
251; relationship to hypertext,
266; roles in, 282–293, 345nn
12–13; stages of producing a
document in, 275–277; textbooks
and, 248–249, 274–282

“Content,” 255–265
Control, relationship to power,

70,73
CONTU report, 202
Cooperation. See Collaboration
Coordination (component of Free

Software), 15, 105–107, 213–215,
224–240; individual virtuosity vs.
hierarchical planning, 211–212,
220–221, 223, 227–229, 237,
340n32; of Linux vs. Minix,
216–218; modulations of,
233–236, 246, 253, 257, 281,
285–288; of technology and
people, 210–211

Copyleft licenses (component of
Free Software), 49, 103–105, 140,
178, 179–209, 309; commercial
use and, 265; Creative Commons
version, 294–300; derivative uses
and 265, 286, 291, 294; disavowal
clause in, 295; early attempts,
334n21; forking and, 287–288; as
hack of copyright law, 182–183;
modulations of, 234–236, 253,
256–257, 259, 285 See also
Copyright; General Public License;
Intellectual property

Copyright, 2, 74–76, 182, 189;
changes in 1976, 134, 187,

199–206; changes in 1980, 183,
187, 199–206; infringement and
software, 189–209; legal
definition of software and,
189–209; requirement to register,
200, 260; rights granted by, 183;
software and copyrightability,
189, 199, 335n41; specificity of
media and, 278–279; transfer
of, 205; works for hire, 282. See
also Copyleft licenses; Copyright
infringement; Intellectual property

Copyright infringement, 199,
335nn46–47; EMACS controversy
and, 193, 196–200; infringement
on own invention, 198; legal
threats and, 195, 205–206;
permissions and, 194–206;
redistribution of software as, 204

Copyright licenses. See Copyleft
licenses; Copyright

Crain, Patricia, 74–75
Creative Commons, 3, 11, 17,

246, 258–268, 283; activism of,
261; connection to Connexions,
262–263; marketing of, 265;
origin and history of 259–261,
writing of licenses, 294–300

Credit, 282–284, 295–296, 309. See
also Attribution

Critique, Free Software as, 211, 222,
235–236, 239

Cultural significance, x, 13, 245,
269, 305

Culture, 38, 44, 244; Creative
Commons version of, 297–300; as
experimental system, 2; law vs.,
298; punting to, 293–300, 343n20

Cygnus Solutions (corporation),
99, 110

Debugging, 216–217; patching vs.,
224, 228–229, 237, 341n43

Defense, Department of, 171–176,
328n5, 329n9

index370

Defense Advanced Research Projects
Agency (DARPA), 138–141,
171–172

Delanda, Manuel, 181, 329n9
Design, 80, 134, 185, 220, 337n2;

and evolution, 221–222
Dewey, John, 25, 181, 241
diff (software tool), 129–130, 137,

238; history of, 230–231
Differentiation of software, 120,

137, 141–142, 155–156; in
Apache, 226–229. See also Fork-
ing; Sharing source code

Digital Equipment Corporation
(corporation), 147, 192;
DECNet, 168

Digital Millennium Copyright Act
(DMCA), 99

Digital signal processing (DSP), 244,
248, 272, 281

Disney, Walt, 261
Distance learning, 251–252
Distributed phenomena, ethnography

of, 19–20
Domain Name System (DNS), 52,

108, 338n4
Dotcom era, 110–112
Doyle, Sean, 31–37, 43, 55, 61,

72–74, 80–81, 84–86, 150, 328n1
Dyson, Esther, 55

Economics, institutional, 343n17
Editions, print vs. electronic,

277–278. See also Versions
Edwards, Paul, 315n20, 329n9
Eisenstein, Elizabeth, 273, 276,

344n5
Eldred, Eric, 259–260
EMACS (text editor), 70, 180–209,

214, 256, 341n43; controversy
about, 188–199, 235, 308; ersatz
versions, 185–186, 189; legal
status of, 193–199; modularity
and extensibility of, 184–188;
number of users, 218

EMACS commune, 186–188, 192, 196
End User License Agreements

(EULAs), 180
Enlightenment, 64–66, 77–78,

85–86, 255, 273
Entrepreneurialism, 33–35, 81–84,

309
Ethnographic data: availability of,

21, 181, 333n9; mailing lists and,
181;

Ethnography, 19–22, 28, 114–115
Evil, 72–74, 76, 103, 150
Experiment, collective technical, 15,

98, 308
Experimentation, 206, 212, 241,

245, 268, 288; administrative
reform as, 181–182. See also
Modulations

Extensible Mark-up Language
(XML), 275–276, 288, 344n8;
editors, 342n5

Extropians, 86

Fair use, 200, 203, 299, 347n22
Federal Communications Commis-

sion (FCC), 331n37
Feyerabend, Paul, 85, 316n2
Figuring out, 17, 18–19, 65, 114,

144, 155, 181, 236, 263–268, 270,
286, 290, 306, 314n13, 314n15

File Transfer Protocol (ftp), 216–217
Finality, 11–12, 270–293; certainty

and stability vs., 270; fixity vs.,
280; in Wikipedia and Connex-
ions, 276–277

Firefox, 98, 106. See also Netscape
Navigator

Fixity, 273–276, 280 345n10. See
also Finality

Folklore of Internet, 55. See also
Usable pasts

Forking, 136–141; in Apache, 226–
229; in Connexions, 286–293; in
Linux, 232–233. See also Sharing
source code

index 371

FORTRAN (programming language),
121, 123

Foucault, Michel, 66, 77–78, 317n8,
345n10

FreeBSD, 219, 226, 231; develop-
ment of, 338n4

Free Documentation License (FDL),
256–257, 336n51; invariant
clause in, 257. See also Copyleft
licenses

Free Software, 1–2, 95–117 passim,
129; anthropology and, 243–244;
components of, 166, 246; as
experimental system, 13–17, 97;
modulations of, 16, 272; nonfree
tools and, 233–236; open source
vs., 2–3, 14, 99, 113, 115–116,
210, 311n1, 321n1; relation to
Internet, ix, 4; scholarly research
on, 337nn1–2. See also Open
Source

Free Software Foundation, 99, 109,
205–207, 218, 290, 323n19; cult
status of, 214–216; Linux and
Apache vs., 208–209

Freeware summit, 108–109
Fun, and development of Linux,

212–218, 233
Futurology, 87–89. See also Trans-

humanism

Geeks, 2, 5, 33–34, 64, 94, 100,
116, 174, 178, 207, 239, 263,
280; “archival hubris,” 114; code-
switching and, 343n14; hackers
vs., 35–36; as moderns, 66, 78,
92–93, 239; self-representation,
19, 114, 314n16, 316n2, 324n2.
See also Affinity

Geertz, Clifford, 40–41
Gender, 45, 91, 244, 311n3, 318n19
General Motors (GM), 148, 174,

328n5
General Public License (GPL),

103–104, 179–209 passim, 234,

256; development of, 207, 214
Gilmore, John, 55, 318n27
GNU (Gnu’s Not Unix), 166, 189–199
GNU C Compiler (gcc), 68–69, 182,

214, 216
GNU EMACS. See EMACS
GNU Free Documentation License. See

Free Documentation License (FDL)
GNU General Public License. See

General Public License
GNU Hurd (kernel), 215
GNU/Linux, 337n3. See also Linux
GNU Manifesto, 191–193, 198
Goals, lack of in Free Software, 211,

228–229; norms as, 271
Goody, Jack, 273
Gosling, James, 188–206, 238,

335n33
GOSMACS (version of EMACS),

188–199, 204, 238, 335n33
Grassmuck, Volker, 37–38
Gropper, Adrian, 31–35, 43, 81–86,

150, 321n23
Grune, Dick, 231
Gulhati, Ashish, 58

Habermas, Jürgen, 22–23, 39, 50.
See also Public sphere

Hacker ethic, 15, 180–181, 196–
197, 206–209, 332n4, 335n34,
346n15

Hackers, 36, 111, 181, 206, 213,
314n5, 316nn1–2, 332n4;
curiosity and virtuosity of, 211;
hacks and, 182–183. See also
Geeks

Hahn, Eric, 102–103, 108
Harthill, Rob, 225–229
Hayden, Robert, 35
Hayek, Friedrich, 79, 93, 168, 316n2
Healthcare: allocation of, 82–83,

information technology in, 81–84
Hecker, Frank, 102–103, 108
Hendricks, Brent, 244–258,

271–272, 280, 282–287, 290, 299

index372

Hierarchy, in coordination,
211–212, 220–221

Holmes, Oliver Wendell, 294,
343n20

Hopper, Grace, 121
Housman, A. E., 284–285, 346n14
httpd, 212, 223–227
Huxley, Julian, 87
Hypertext Transfer Mark-up

Language (HTML), 223, 276
Hypertext Transfer Protocol (http),

73, 177, 223

Ideology, 40–41, 317n13
Implementation of software, 119;

distinguished from standards and
protocols, 330n28

Informatics (corporation), 124
Information Processing Techniques

Office (IPTO). See Defense
Advanced Research Projects
Agency (DARPA)

Information society, 7, 22. See also
Internet Society

Infrastructure, 34, 62, 76, 143–144,
166, 208, 212, 215, 308; of
publishing, 255–256, 274;
scientific and technical, 315n20.
See also Open Systems

Institute of Electrical and Electron-
ics Engineers (IEEE), 157–158,
165

Institutional economics, 266
Intel (corporation), 145–146,

164–165
Intellectual property, 66, 75–76,

99, 102, 103, 109, 119, 133–134,
140, 144, 150, 179–201,
203–209, 307; strategy and,
195–199, 202, 294–299. See also
Copyleft licenses; Copyright;
Trademark law; Trade secret law

Interface definition. See Standards
International Business Machines

(IBM), 70, 119, 147, 158

International Organization for
Standardization (ISO), 171, 306

International Telecommunications
Union (ITU), 169–171

Internet, 4–8, 21–22, 27–29, 57–62;
early development, 169–170,
213–214; folklore and, 55; geeks
and, 33–36; idea of order and, 38;
India and, 43–46; public spheres
and, 46–54; relation to Free
Software, 4, 213–214; singularity
of, 9, 51, 306–309. See also TCP/IP

Internet Engineering Task Force
(IETF), 57–61, 176, 332n51

Internet protocols. See TCP/IP
Internet Society (ISOC), 59, 176,

332n51
Interoperability, 144–151, 158, 166,

170–175
Intervention, technology as, 66,

81–94, 266, 280

Johns, Adrian, 273–274
Joy, Bill, 137–141, 149, 158, 174,

183, 193, 238, 321n28
Justice, Department of, 100, 124,

325n13

Kahn, Robert, 138, 172
Kant, Immanuel, 66, 77–78, 86,

181, 239
Katz, Lou, 129–130
Keynes, John Maynard, 168
Kittler, Friedrich, 273

Labalme, Fen, 195–197
Lag, technological, 85–85
LaTeX (typsetting language), 275,

344n8
Latour, Bruno, 273, 314n13,

315n20, 346n16
Law, John, 344n1
Legal realism, 343n20
Legitimacy, circulation of knowledge

and, 6–9, 305–306
Leitl, Eugene, 51, 58, 90–92, 112

index 373

Lessig, Lawrence, 56–57, 259–268,
342n9, 344n20, 345n11; law and
economics and, 267, 298; style of
presentations, 262

Liberalism, classical, 53
Libertarianism, 55–56, 109, 318n27
Licensing, of UNIX, 127–128
Licklider, J. C. R., 138
Linux (Free Software project), 15,

69, 108, 111, 136, 177, 206,
211–214, 231, 248, 277, 327n35,
337nn3–4; license terms, 338n10;
origins in Minix, 136, 215–217;
planning vs. adaptability in,
220–222, 337n2; process of
decision making, 220; Source
Code Management tools and,
229–236; VGER tree and, 232

Linux Kernel Mailing List (LKML),
338n4

Lions, John, 132–135
LISP (programming language) 123,

323n1; interpreter in EMACS, 204
Luther, Martin, 66–69

Mahoney, Michael, 324n5
Mainframes, 146–147
Malamud, Carl, 170–171
Mannheim, Karl, 40–41
Massachusetts Institute of Technology

(MIT), 34, 206–208, 332n4; open
courseware and, 251–252

McCool, Rob, 100, 212, 223–224
McGill, Scott, 284–285
McIlroy, Douglas, 126, 230
McKenna, Regis, 151–152
McLuhan, Marshall, 276, 344n5
McVoy, Larry, 232–236, 330n27
Meaning, regulation through law,

298
Medcommons, 33–34
Mergers, 158–160
Merton, Robert, 271; Mertonian

norms, 271, 280, 310
Metcalfe’s Law, 52, 318n26

Mickey Mouse, 261
Microcomputers, 146–147
Microsoft, 103, 158, 237, 323n19;

as Catholic Church, 70, 74–76;
Internet Explorer, 73, 100–101;
Windows Operating System, 132,
140, 164–165; Xenix (version of
UNIX), 153–155, 190

Mikro e.V., 37
Mill, John Stuart, 53, 78
Miller, Dave, 232
Minix (operating system), 135–136,

137, 212, 215–217; goals of,
218–219. See also Tanenbaum,
Andrew

Modernity, 78; tradition and,
291–292, 346n17

Modifiability, 10–13, 17, 152,
166–167, 176–177, 202, 216,
238–239, 256, 264, 285,
308–320; EMACS and, 184–188;
implications for finality, 11–12,
270–286; modularity in software,
220, 228, 340n34; relation of
different disciplines to, 291. See
also Adaptability

Modulation: of Free Software, 16,
212, 244, 267, 301–304; practices
of, 245–246, 253–258, 264

Mol, Anne-Marie, 344n1
Monopoly, 54, 120, 124, 127, 144,

151–152, 158, 165–170, 325n13
Montgomery, Warren, 194, 201,

333n14, 336n47
Moody, Glyn, 19, 232
Moore’s Law, 52, 318n26
Moral and technical order, 28–29,

43, 50, 54, 57, 61, 66, 77, 90,
110, 115, 118, 131, 140–144,
150, 155, 166, 177, 185–187,
215, 236, 246, 260, 263, 291,
299, 301, 307–309; definition of,
328n2. See also Social imaginary

Mosaic (web browser), 100–101, 177,
223. See also Netscape Navigator

index374

Motion Picture Association of
America (MPAA), 53

Movement (component of Free
Software), 13–14, 97, 107–117,
212, 246, 321n1; function of,
113–115; modulations of, 289,
304, 341n1, 342n7

Mozilla, 73, 100–108. See also
Netscape

Mozilla Public License (MPL), 104
Multics, 125–126, 185, 325n9,

326n16
Multi-User Dungeons (MUDS), 214
Music, 44, 61, 298–299; production,

277; recursive public and, 303

Napster, 5, 28–29, 51–57, 58–62,
66, 90, 261

National Center for Super Computing
Applications (NCSA), 100–101,
212, 223–224

Nesson, Charlie, 264
net.emacs (mailing list), 189–199
Net neutrality, 9
Netscape, 13, 98–107, 110
Netscape Navigator (application),

13, 98–107, 177
Netscape Public License (NPL), 104
Networks: as products, 168;

protocols for, 166–168; theories
of, 315n19; varieties of, 168–170,
330n29. See also Open Systems
Interconnection (OSI); TCP/IP

“New” httpd (mailing list), 223–
229, 339n16

Norms, 55, 269–301, 347n22; aca-
demic, 281, 286, 296; channeling
by legal means, 293, 298–299;
coordination and, 286; cultural,
290, 292, 297; evolution and,
292; existence of, 17, 271, 292;
practices and technology vs.,
290–292

Novell, 165
Novelty, of Free Software, 211, 236

Objectivity in social science, 343n11
Ong, Walter, 273
Ontology: of Linux, 222; of UNIX

operating system, 131, 136,
141–142

Open access, 3; recursive public
and, 304

Open content licenses, 257
Open CourseWare (OCW), 251–252,

263
Openness (component of Free

Software), 14, 142–147, 163,
165–168, 255; closure vs., 150;
definition of, 149–150; goals of,
148; intellectual property and,
144; modulations of, 255, 285;
proprietary vs., 149, 160, 164,
256; standardization and, 144,
162; sustainability vs., 256. See
also Open Systems

Open Software Foundation (OSF),
155, 169

Open Source, 14, 165; Free Soft-
ware vs., 2–3, 14, 99, 112–116,
210, 311n1, 321n1; inspiration
for Connexions, 248–259; “Open
Source Definition,” 108

Open Source Initiative, 108, 323n19
Open Sources, 110–111
Open Systems, 14, 37, 103, 143–178,

180, 187, 207, 307; intellectual
property and, 150–152; meaning
in science, 328n3; networks and,
166–177; operating systems and,
153–165; See also Infrastructure;
Openness, definition of

Open Systems Interconnection
(OSI), as reference model, 144,
166–177

Operating systems, history of,
119–142

O’Reilly, Tim, 108
O’Reilly Press, 108, 110
OSI. See Open Systems Interconnec-

tion

index 375

Packet-switching, 171–172, 318n27
Participant observation, 244, 268,

271, 343n11; writing copyright
licenses as, 294–300

Pascal (programming language),
138

Patches (software), 220; debugging
vs., 224; voting in software devel-
opment and, 222–229

Patents on software, 199–200,
335n40

Pedagogy, 246; Minix and, 217–
218; network protocols and,
175; operating systems and, 119,
141–142, 166, 215, 337n3

Peer production, 210, 307
Perens, Bruce, 105, 108, 234
perl (programming language), 108,

338n4
Permission, 283–286. See also

Copyright infringement
Planning, 12, 60, 211, 238, 316n2.

See also Adaptability
Polymaths, 266, 280; transhuman-

ists vs., 77–94
Portability, of operating systems

123–125, 153–155
Porting. See Sharing source code
POSIX (standard) 155, 157–58, 328n5
Power, relationship to control, 70,

73. See also Reorientation of
power and knowledge.

Practices, x, 12, 113–116, 180, 302;
five components of Free Software,
3, 97–98, 181, 210–211, 245,
253, 302; norms vs., 290–292; op-
posed to legal changes, 199–200;
stories as, 114

Pragmatism, 85
Prentice Hall, 216–217
Printing press, 273, 279
Programming, 58–59, 80, 120–123
Programming languages, 68,

119–126, 324n5
Progress, 64–65, 77, 88, 92

Proliferation of software, 120, 123,
141–142, 155, 185, 208, 308,
323n1. See also Forking; Sharing
source code

Property. See Intellectual property
Proprietary systems: closed, 32;

open vs., 126, 143; lock-in and,
145

Protestant Reformation, 65–76, 94,
114, 149; as usable past, 54

Protocols: distinguished from
standards and implementation,
330n28; Open Systems Intercon-
nection (OSI), 144, 166–177;
TCP/IP, 55, 60, 120, 138–141,
144, 166–177, 319n32

Public, x, 3–7, 38–43, 302; autotelic
and independent, 48–49, 50, 53,
61–63, 76, 290, 312n3; private
vs., 312n5; self-grounding of,
47–48. See also Recursive public

Publication, 49–50, 54; as notional
event, 275; transformation by
Internet, 271–286

Public domain, 103, 119, 261–262,
335n33; commons vs., 313n11;
contrasted with free, 191–193,
334n16; Creative Commons
licenses and, 283; environmental-
ism and, 267; literary texts in,
285; meaning in EMACS con-
troversy, 190–199. See also
Commons

Public Library of Science (PLoS),
342n10

Public sphere: recursive public vs.,
305; theories of, 4, 8, 22–23,
38–43, 211, 311n3. See also Pub-
lic; Recursive public

python (programming language),
334n21

QED (text editor), 184

Raelians, 86
Ratto, Matt, 337n2

index376

Raymond, Eric Steven, 19, 99, 108,
109, 111, 114, 116, 154, 213, 237,
243–244, 337n1, 338n4, 346n15

RCS (software tool), 230–231. See
also Source Code Management
tools

Recording Industry Association of
America (RIAA), 51, 53, 58, 261

Recursion, definition of, 30
Recursive public, 27–31, 76, 104,

115, 134–137, 175–177, 181,
187, 211, 222, 240, 245, 269–
270, 281, 290, 300; definition
of, 3, 7–20; examples of, 52–61,
246; layers of, 8–9, 29, 30, 50–52,
57, 59, 229, 235–236, 340n39;
precursors of, 119, 128

Redd Kross, 265
Red Hat (corporation), 110
Redistribution of software, 204–205
Reedstrom, Ross, 249, 252, 271, 290
Reformation vs. revolution, 67, 71,

83
Regulation: Internet, 56; telecom-

munications, 169–170, 331n37
Religion, 45, 81
Religious wars, 67, 166–169, 320n5
Reorientation of power and knowl-

edge, 2, 6–13, 61, 116, 152, 174,
181, 239, 267, 270, 272, 278–
279, 302–310, 313n9

Requests for Comments (RFC),
57–61, 167, 173–174, 306–307,
331n46

Reuse. See Modifiability
Reverse engineering, 234–235
Rheingold, Howard, 45–6, 55, 213,

338n5
Rice University, 243–244, 248; legal

counsel of, 262
Richards, Paul, 231
Ricoeur, Paul, 42
Ritchie, Dennis, 125–132, 142,

237–238, 324n5, 342n20

Roles, in Connexions, 282–293
Rumor on Usenet, 193–195,

213–215, 223, 338n7

Sahlins, Marshall, 294–295
Salus, Peter, 19, 128–130, 139,

324n2, 326n21
Sampling, musical, 298–299, 347n22
SCO (corporation), 155, 165, 327n35
Second Life, as recursive public, 304
Secrecy, 101–103, 119–121, 164,

174, 186, 202, 325n15
Shambhala, 226–229, 231. See also

Apache
Shankar, Udhay, 43–46, 55
Shannon, Claude, 37
Sharing source code (component

of Free Software), 14, 118–128,
137–142, 180; before Free
Software, 121–123; legal as-
pects, 129–131; modulations of,
253–258, 260, 285; pedagogical
aspects, 129, 132–136; technical
aspects, 129–130

Silk-list (mailing list), 43–45; as a
public, 46–51

Singularity, 52, 87–93
Skolnick, Cliff, 224–225
Smith, Adam, 328n2
Social imaginary, 12, 22, 38–43,

47–49, 55–57, 64, 115, 148, 167,
180, 260, 263, 305, 316n22;
ideology vs., 40–42; imagined
communities and, 317n6. See also
Moral and technical order

Social movement, theories of, 113,
323n19

Software: copyrightability of,
189–209; court cases concerning,
335n49; history of, 324n5;
implementation of, 173; legal
definition of source code and,
203; registration of copyright,
200, 203, 335n43

index 377

Software development, 80, 105–106,
109, 113, 322n8; in Apache
project, 224–229; creating vs.
maintaining, 199; patch and vote
method, 222–229, 231; as spec-
trum, 239. See also Source Code
Management tools (SCMs)

Software manuals, 257, 336n51
Software tools, 106, 129, 230
Solaris (operating system), 140,

155, 159
Source code, 124, 152, 200; batch

processing, 122; legal definition
of software and, 203–204; trans-
lation of, 121–123

Source Code Management tools
(SCMs), 210, 212, 229–236;
definition of, 229; right to
“commit” change, 232; as tool
for distribution, 230. See also
Bitkeeper; Concurrent Versioning
System (cvs)

Sparc (computer workstation), 140,
169

Stallman, Richard, 70, 99, 104, 108,
110–111, 114, 116, 179–209,
213, 218, 233, 256, 308, 321n1,
329n12

Standards, 80, 143–144, 152, 307;
distinguished from protocols and
implementation, 330n28; as form
of competition, 147, 151–152,
155, 157–166; implementation,
157, 173–177; interface definition
as, 155–156; Internet, 32, 37, 50,
58–61, 73, 76, 103; ownership
of, 164; programming languages,
122–124; validation of, 168, 173,
176

Standards organizations, 144,
156–166, 174

Standards processes, 58, 60–61,
142, 167, 170–171, 173, 306–307

Sundaram, Ram, 45

Sun Microsystems, 101, 137, 158,
193, 233, 330n27

System V Interface Definition
(SVID), 157

Tanenbaum, Andrew, 132, 212–219,
327n32; Minix and, 135–136,
215, 217

Taylor, Charles, 22, 39, 41–43, 47,
57, 317n8

tcl/tk (programming language), 68
TCP/IP (Transmission Control

Protocol/Internet Protocol), 55,
60, 120, 144, 166–177, 319n32;
goals of, 172–173; included in
BSD, 138–141, 324n3

Technocrats, 316n2
Technology: as argument, 5, 8, 29,

92, 266; lag, 84–85; meanings of,
81–84; politics of, 7

TECO (text editor and programming
language), 184–185, 197, 203

Teilhard de Chardin, Pierre, 87
Telecommunications industry,

169–170
Terbush, Randy, 227
TeX, 15, 323n1
Textbooks, 244; model in Connex-

ions, 255–256, 290, 342n7; on
operating systems and networks,
135–136, 216–217, 331n49

Text editors, 122, 137, 183–187,
325n9

Thau, Robert, 226–229
Thompson, Ken, 125–131, 137–138,

142, 230, 324n5, 325n9
Time: initial conditions and 91–92;

singularity and, 88; technical
progress and, 79, 84–85, 86–90

Torek, Chris, 205, 334n24
Torvalds, Linus, 69, 108, 110, 206,

212, 338n10; autobiography of,
213; in Bitkeeper controversy,
232–236

index378

Trademark law, 140, 189, 327n24
Trade secret law, 129, 133–134,

137, 189, 199–200, 203, 325n15,
335nn46–47; relationship to
public domain, 201–202

Transhumanism, 52–53, 66, 280,
321n25; Julian Huxley and, 87;
polymaths vs., 77–94; singularity
and, 87–88

Translation of source code, 121–123
Transparency. See Availability
Traweek, Sharon, 298
Trigdell, Andrew, 234–235
Turing, Alan, 121–122

Unbundling, 119, 124, 325n13
Uncertainty, in the law, 199–206
Unipress, 188–199, 204
Unisys, 159–160
UNIX International, 155, 162
UNIX operating system, 68, 119, 213;

allegiance to versions of, 154–155,
277, 307; as commercial
product, 135; cost of licenses,
326n20; development of, 238;
history of, 125–131, 153–166;
open systems and, 153–166; as
part of speech, 155; relationship
to Arpanet, 120, 137–141;
standardization and, 153–166;
system V (AT&T version of UNIX),
154; Windows Operating System
vs., 132; Xenix, 154

UNIX philosophy, 120, 132, 142,
326n23

Unix to Unix copy protcol (uucp),
169, 327n38

UNIX wars, 153, 162
Usable pasts, 64–66, 72, 77, 92–94,

111, 116, 149, 170, 324n2,
329n12

Usenet, 169, 180, 207; rumor on,
193–195, 203, 213–215, 223,
338n7

Usenix (user group), 129
User groups, 156–157, 223, 325n7;

/usr/group, 156–158.
Users, status in Connexions, 282

VA Linux (corporation), 99, 110–111
van Rossum, Guido, 334n21, 338n4
Version control. See Source Code

Management tools
vi (text editor), 137, 183
Vinge, Vernor, 87
Virtual communities, 314n15,

318n21

Wall, Larry, 110, 338n4
Wallach, Dan, 341n44
Warner, Michael 39, 47–48
Weber, Max, 20
Weber, Steven, 105, 220, 236,

337n1
White Stripes, 265
Wikipedia (collaborative ency-

clopedia) 5, 276, 282, 288,
311n4, 345nn12–13

Wiley, David, 257
Wilson, Andrew, 224, 225
Windows. See Microsoft
Wired (magazine), 46, 55; Hotwired

(online version of Wired), 223
Workstations, 153, 158
World Wide Web (www), 101, 103,

167, 177, 223
World Wide Web consortium (w3c),

103, 329n13

XML. See Extyensible Mark-up
Language

X Windows, 166, 338n4
X/Open Consortium, 155, 157–158,

160
Xerox PARC, 169

Zawinski, Jamie, 100–101, 106–107
Zimmerman, Steve, 190–199, 201,

205–206, 333n14

Parts of this book have been published
elsewhere. A much earlier version of
chapter 1 was published as “Geeks, Social
Imaginaries and Recursive Publics,”
Cultural Anthropology 20.2 (summer 2005);
chapter 6 as “The EMACS Controversy,”
in Mario Biagioli, Martha Woodmansee,
and Peter Jaszi, eds., Contexts of Invention
(forthcoming); and parts of chapter 9
as “Punt to Culture,” Anthropological
Quarterly 77.3.

christopher m. kelty
is an assistant professor of anthropology
at Rice University.

Library of Congress Cataloging-in-

Publication Data

Kelty, Christopher M.

Two bits : the cultural significance of free

software / Christopher M. Kelty.

p. cm. — (Experimental futures)

Includes bibliographical references and index.

ISBN-13: 978-0-8223-4242-7 (cloth : alk. paper)

ISBN-13: 978-0-8223-4264-9 (pbk. : alk. paper)

1. Information society. 2. Open source

software—Social aspects. I. Title.

HM851K45 2008

303.48'33—dc22 2007049447

